Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada.
School of Computer Science, Shaanxi Normal University, 620 West Chang'an Avenue, 710119, Shaanxi, China.
Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac079.
MicroRNAs (miRNAs), as critical regulators, are involved in various fundamental and vital biological processes, and their abnormalities are closely related to human diseases. Predicting disease-related miRNAs is beneficial to uncovering new biomarkers for the prevention, detection, prognosis, diagnosis and treatment of complex diseases.
In this study, we propose a multi-view Laplacian regularized deep factorization machine (DeepFM) model, MLRDFM, to predict novel miRNA-disease associations while improving the standard DeepFM. Specifically, MLRDFM improves DeepFM from two aspects: first, MLRDFM takes the relationships among items into consideration by regularizing their embedding features via their similarity-based Laplacians. In this study, miRNA Laplacian regularization integrates four types of miRNA similarity, while disease Laplacian regularization integrates two types of disease similarity. Second, to judiciously train our model, Laplacian eigenmaps are utilized to initialize the weights in the dense embedding layer. The experimental results on the latest HMDD v3.2 dataset show that MLRDFM improves the performance and reduces the overfitting phenomenon of DeepFM. Besides, MLRDFM is greatly superior to the state-of-the-art models in miRNA-disease association prediction in terms of different evaluation metrics with the 5-fold cross-validation. Furthermore, case studies further demonstrate the effectiveness of MLRDFM.
微小 RNA(miRNAs)作为关键的调节因子,参与各种基本和重要的生物过程,其异常与人类疾病密切相关。预测与疾病相关的 miRNAs 有助于发现复杂疾病预防、检测、预后、诊断和治疗的新生物标志物。
在这项研究中,我们提出了一种多视图拉普拉斯正则化深度分解机(DeepFM)模型 MLRDFM,用于预测新的 miRNA-疾病关联,同时改进标准的 DeepFM。具体来说,MLRDFM 从两个方面改进了 DeepFM:首先,MLRDFM 通过基于相似性的拉普拉斯正则化它们的嵌入特征来考虑项目之间的关系。在这项研究中,miRNA 拉普拉斯正则化整合了四种 miRNA 相似性,而疾病拉普拉斯正则化整合了两种疾病相似性。其次,为了明智地训练我们的模型,拉普拉斯特征映射被用来初始化密集嵌入层中的权重。在最新的 HMDD v3.2 数据集上的实验结果表明,MLRDFM 提高了 DeepFM 的性能并减少了过拟合现象。此外,MLRDFM 在 miRNA-疾病关联预测方面,在 5 倍交叉验证的不同评估指标下,均优于最先进的模型。此外,案例研究进一步证明了 MLRDFM 的有效性。