Dai Junqiang, He Jianghua, Phadnis Milind A
Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA.
Contemp Clin Trials Commun. 2024 Aug 2;41:101344. doi: 10.1016/j.conctc.2024.101344. eCollection 2024 Oct.
Time-to-event (TTE) endpoints are evaluated as the primary endpoint in single-arm clinical trials; however, limited options are available in statistical software for sample size calculation. In single-arm trials with TTE endpoints, the non-parametric log-rank test is commonly used. Parametric options for single-arm design assume survival times follow exponential distribution or Weibull distribution.
The exponential- or Weibull-distributed survival time assumption does not always reflect hazard pattern of real-life diseases. We therefore propose gamma distribution as an alternative parametric option for designing single-arm studies with TTE endpoints. We outline a sample size calculation approach using gamma distribution with a known shape parameter and explain how to extract the gamma shape estimate from previously published resources. In addition, we conduct simulations to assess the accuracy of the extracted gamma shape parameter and to explore the impact on sample size calculation when survival time distribution is misspecified.
Our simulations show that if a previously published study (sample sizes 60 and censoring proportions 20 %) reported median and inter-quartile range of survival time, we can obtain a reasonably accurate gamma shape estimate, and use it to design new studies. When true survival time is Weibull-distributed, sample size calculation could be underestimated or overestimated depending on the hazard shape.
We show how to use gamma distribution in designing a single-arm trial, thereby offering more options beyond the exponential and Weibull. We provide a simulation-based assessment to ensure an accurate estimation of the gamma shape and recommend caution to avoid misspecification of the underlying distribution.
事件发生时间(TTE)终点在单臂临床试验中作为主要终点进行评估;然而,在统计软件中用于样本量计算的选项有限。在以TTE为终点的单臂试验中,通常使用非参数对数秩检验。单臂设计的参数选项假定生存时间服从指数分布或威布尔分布。
指数分布或威布尔分布的生存时间假设并不总是反映现实生活中疾病的风险模式。因此,我们提出将伽马分布作为设计以TTE为终点的单臂研究的另一种参数选项。我们概述了一种使用具有已知形状参数的伽马分布的样本量计算方法,并解释了如何从先前发表的资料中提取伽马形状估计值。此外,我们进行模拟以评估提取的伽马形状参数的准确性,并探讨当生存时间分布指定错误时对样本量计算的影响。
我们的模拟表明,如果先前发表的研究(样本量为60,删失比例为20%)报告了生存时间的中位数和四分位间距,我们可以获得合理准确的伽马形状估计值,并将其用于设计新的研究。当真实生存时间服从威布尔分布时,样本量计算可能会根据风险形状被低估或高估。
我们展示了如何在设计单臂试验中使用伽马分布,从而提供了除指数分布和威布尔分布之外更多的选项。我们提供了基于模拟的评估,以确保对伽马形状进行准确估计,并建议谨慎操作以避免对潜在分布的错误指定。