Suppr超能文献

使用预定的删失率为比例风险模型模拟生存数据。

Simulating survival data with predefined censoring rates for proportional hazards models.

作者信息

Wan Fei

机构信息

Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 W. Markham St., # 781, Little Rock, 72205, AR, U.S.A.

出版信息

Stat Med. 2017 Feb 28;36(5):838-854. doi: 10.1002/sim.7178. Epub 2016 Nov 21.

Abstract

The proportional hazard model is one of the most important statistical models used in medical research involving time-to-event data. Simulation studies are routinely used to evaluate the performance and properties of the model and other alternative statistical models for time-to-event outcomes under a variety of situations. Complex simulations that examine multiple situations with different censoring rates demand approaches that can accommodate this variety. In this paper, we propose a general framework for simulating right-censored survival data for proportional hazards models by simultaneously incorporating a baseline hazard function from a known survival distribution, a known censoring time distribution, and a set of baseline covariates. Specifically, we present scenarios in which time to event is generated from exponential or Weibull distributions and censoring time has a uniform or Weibull distribution. The proposed framework incorporates any combination of covariate distributions. We describe the steps involved in nested numerical integration and using a root-finding algorithm to choose the censoring parameter that achieves predefined censoring rates in simulated survival data. We conducted simulation studies to assess the performance of the proposed framework. We demonstrated the application of the new framework in a comprehensively designed simulation study. We investigated the effect of censoring rate on potential bias in estimating the conditional treatment effect using the proportional hazard model in the presence of unmeasured confounding variables. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

比例风险模型是医学研究中用于涉及事件发生时间数据的最重要统计模型之一。模拟研究通常用于评估该模型以及其他用于事件发生时间结果的替代统计模型在各种情况下的性能和特性。考察具有不同删失率的多种情况的复杂模拟需要能够适应这种多样性的方法。在本文中,我们提出了一个通用框架,通过同时纳入来自已知生存分布的基线风险函数、已知删失时间分布和一组基线协变量,来模拟比例风险模型的右删失生存数据。具体而言,我们给出了事件发生时间由指数分布或威布尔分布生成且删失时间具有均匀分布或威布尔分布的场景。所提出的框架纳入了协变量分布的任何组合。我们描述了嵌套数值积分以及使用求根算法来选择在模拟生存数据中实现预定义删失率的删失参数所涉及的步骤。我们进行了模拟研究以评估所提出框架的性能。我们在一个设计全面的模拟研究中展示了新框架的应用。我们研究了在存在未测量混杂变量的情况下,删失率对使用比例风险模型估计条件治疗效果时潜在偏差的影响。版权所有© 2016约翰威立父子有限公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验