Cavaillès Clémence, Wallace Meredith, Leng Yue, Stone Katie L, Ancoli-Israel Sonia, Yaffe Kristine
Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA.
Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
medRxiv. 2024 Aug 20:2024.08.19.24312248. doi: 10.1101/2024.08.19.24312248.
Sleep health comprises several dimensions such as duration and fragmentation of sleep, circadian activity, and daytime behavior. Yet, most research has focused on individual sleep characteristics. Studies are needed to identify sleep profiles incorporating multiple dimensions and to assess how different profiles may be linked to adverse health outcomes.
To identify actigraphy-based 24-hour sleep/circadian profiles in older men and to investigate whether these profiles are associated with the incidence of dementia and cardiovascular disease (CVD) events over 12 years.
Data came from a prospective sleep study with participants recruited between 20032005 and followed until 2015-2016.
Multicenter population-based cohort study.
Among the 3,135 men enrolled, we excluded 331 men with missing or invalid actigraphy data and 137 with significant cognitive impairment at baseline, leading to a sample of 2,667 participants.
Leveraging 20 actigraphy-derived sleep and circadian activity rhythm variables, we determined sleep/circadian profiles using an unsupervised machine learning technique based on multiple coalesced generalized hyperbolic mixture modeling.
Incidence of dementia and CVD events.
We identified three distinct sleep/circadian profiles: active healthy sleepers (AHS; n=1,707 (64.0%); characterized by normal sleep duration, higher sleep quality, stronger circadian rhythmicity, and higher activity during wake periods), fragmented poor sleepers (FPS; n=376 (14.1%); lower sleep quality, higher sleep fragmentation, shorter sleep duration, and weaker circadian rhythmicity), and long and frequent nappers (LFN; n=584 (21.9%); longer and more frequent naps, higher sleep quality, normal sleep duration, and more fragmented circadian rhythmicity). Over the 12-year follow-up, compared to AHS, FPS had increased risks of dementia and CVD events (Hazard Ratio (HR)=1.35, 95% confidence interval (CI)=1.02-1.78 and HR=1.32, 95% CI=1.08-1.60, respectively) after multivariable adjustment, whereas LFN showed a marginal association with increased CVD events risk (HR=1.16, 95% CI=0.98-1.37) but not with dementia (HR=1.09, 95%CI=0.86-1.38).
We identified three distinct multidimensional profiles of sleep health. Compared to healthy sleepers, older men with overall poor sleep and circadian activity rhythms exhibited worse incident cognitive and cardiovascular health. These results highlight potential targets for sleep interventions and the need for more comprehensive screening of poor sleepers for adverse outcomes.
睡眠健康包含多个方面,如睡眠时间、睡眠碎片化、昼夜节律活动和日间行为。然而,大多数研究都集中在个体睡眠特征上。需要开展研究来确定包含多个维度的睡眠模式,并评估不同的睡眠模式与不良健康后果之间的关联。
识别老年男性基于活动记录仪的24小时睡眠/昼夜节律模式,并调查这些模式与12年内痴呆症和心血管疾病(CVD)事件的发生率之间的关系。
数据来自一项前瞻性睡眠研究,参与者于2003年至2005年间招募,并随访至2015年至2016年。
基于人群的多中心队列研究。
在3135名登记的男性中,我们排除了331名活动记录仪数据缺失或无效的男性,以及137名基线时存在严重认知障碍的男性,最终样本为2667名参与者。
利用20个从活动记录仪得出的睡眠和昼夜节律活动节奏变量,我们使用基于多个合并广义双曲线混合模型的无监督机器学习技术确定睡眠/昼夜节律模式。
痴呆症和CVD事件的发生率。
我们识别出三种不同的睡眠/昼夜节律模式:活跃健康睡眠者(AHS;n = 1707(64.0%);其特征为睡眠时间正常、睡眠质量较高、昼夜节律性较强以及清醒期活动较多)、睡眠碎片化差的睡眠者(FPS;n = 376(14.1%);睡眠质量较低、睡眠碎片化程度较高、睡眠时间较短以及昼夜节律性较弱)和长时间频繁小睡者(LFN;n = 584(21.9%);小睡时间更长且更频繁、睡眠质量较高、睡眠时间正常以及昼夜节律更碎片化)。在12年的随访中,与AHS相比,多变量调整后,FPS患痴呆症和CVD事件的风险增加(风险比(HR)= 1.35,95%置信区间(CI)= 1.02 - 1.78和HR = 1.32,95% CI = 1.08 - 1.60),而LFN与CVD事件风险增加存在边缘关联(HR = 1.16,95% CI = 0.98 - 1.37),但与痴呆症无关(HR = 1.09,95% CI = 0.86 - 1.38)。
我们识别出三种不同的多维睡眠健康模式。与健康睡眠者相比,整体睡眠和昼夜节律活动节奏较差的老年男性在认知和心血管健康方面表现更差。这些结果突出了睡眠干预的潜在目标,以及对睡眠不佳者进行更全面的不良后果筛查的必要性。