Bhattacharya Tamanash, Alleman Eva M, Noyola Alexander C, Emerman Michael, Malik Harmit S
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Department of Microbiology, University of Washington, Seattle, WA, USA.
bioRxiv. 2024 Aug 22:2024.08.21.609082. doi: 10.1101/2024.08.21.609082.
Alphaviruses are enveloped, single-stranded, positive-sense RNA viruses that often require transmission between arthropod and vertebrate hosts for their sustained propagation. Most alphaviruses encode an opal (UGA) termination codon in nonstructural protein 3 (nsP3) upstream of the viral polymerase, nsP4. The selective constraints underlying the conservation of the opal codon are poorly understood. Using primate and mosquito cells, we explored the role and selective pressure on the nsP3 opal codon through extensive mutational analysis in the prototype alphavirus, Sindbis virus (SINV). We found that the opal codon is highly favored over all other codons in primate cells under native 37°C growth conditions. However, this preference is diminished in mosquito and primate cells grown at a lower temperature. Thus, the primary determinant driving the selection of the opal stop codon is not host genetics but the passaging temperature. We show that the opal codon is preferred over amber and ochre termination codons because it results in the highest translational readthrough and polymerase production. However, substituting the opal codon with sense codons leads to excessive full-length polyprotein (P1234) production, which disrupts optimal nsP polyprotein processing, delays the switch from minus-strand to positive-strand RNA production, and significantly reduces SINV fitness at 37°C; this fitness defect is relieved at lower temperatures. A naturally occurring suppressor mutation unexpectedly compensates for a delayed transition from minus to genomic RNA production by also delaying the subsequent transition between genomic and sub-genomic RNA production. Our study reveals that the opal stop codon is the best solution for alphavirus replication at 37°C, producing enough nsP4 protein to maximize replication without disrupting nsP processing and RNA replication transitions needed for optimal fitness. Our study uncovers the intricate strategy dual-host alphaviruses use at a single codon to optimize fitness.
甲病毒是有包膜的单链正义RNA病毒,其持续传播通常需要在节肢动物和脊椎动物宿主之间进行传播。大多数甲病毒在病毒聚合酶nsP4上游的非结构蛋白3(nsP3)中编码一个乳白(UGA)终止密码子。人们对该乳白密码子保守性背后的选择限制了解甚少。我们使用灵长类和蚊子细胞,通过对原型甲病毒辛德毕斯病毒(SINV)进行广泛的突变分析,探究了nsP3乳白密码子的作用和选择压力。我们发现,在天然的37°C生长条件下,灵长类细胞中乳白密码子比所有其他密码子都更受青睐。然而,在较低温度下生长的蚊子和灵长类细胞中,这种偏好会减弱。因此,驱动乳白终止密码子选择的主要决定因素不是宿主遗传学,而是传代温度。我们表明,乳白密码子比琥珀色和赭石色终止密码子更受青睐,因为它导致最高的翻译通读率和聚合酶产量。然而,用有义密码子替代乳白密码子会导致全长多聚蛋白(P1234)过度产生,这会破坏nsP多聚蛋白的最佳加工过程,延迟从负链RNA到正链RNA产生的转换,并显著降低SINV在37°C时的适应性;这种适应性缺陷在较低温度下会得到缓解。一个自然发生的抑制突变意外地补偿了从负链RNA到基因组RNA产生的延迟转换,同时也延迟了随后基因组RNA和亚基因组RNA产生之间的转换。我们的研究表明,乳白终止密码子是甲病毒在37°C时进行复制的最佳解决方案,它能产生足够的nsP4蛋白以最大化复制,同时又不会破坏最佳适应性所需的nsP加工和RNA复制转换。我们的研究揭示了双宿主甲病毒在单个密码子上用于优化适应性的复杂策略。