Suppr超能文献

通过深度线粒体突变分析实现单细胞调控多组学的稳健性和可靠性。

Robustness and reliability of single-cell regulatory multi-omics with deep mitochondrial mutation profiling.

作者信息

Weng Chen, Weissman Jonathan S, Sankaran Vijay G

机构信息

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Whitehead Institute for Biomedical Research, Cambridge, MA, USA.

出版信息

bioRxiv. 2024 Aug 24:2024.08.23.609473. doi: 10.1101/2024.08.23.609473.

Abstract

The detection of mitochondrial DNA (mtDNA) mutations in single cells holds considerable potential to define clonal relationships coupled with information on cell state in humans. Previous methods focused on higher heteroplasmy mutations that are limited in number and can be influenced by functional selection, introducing biases for lineage tracing. Although more challenging to detect, intermediate to low heteroplasmy mtDNA mutations are valuable due to their high diversity, abundance, and lower propensity to selection. To enhance mtDNA mutation detection and facilitate fine-scale lineage tracing, we developed the single-cell Regulatory multi-omics with Deep Mitochondrial mutation profiling (ReDeeM) approach, an integrated experimental and computational framework. Recently, some concerns have been raised about the analytical workflow in the ReDeeM framework. Specifically, it was noted that the mutations detected in a single molecule per cell are enriched on edges of mtDNA molecules, suggesting they resemble artifacts reported in other sequencing approaches. It was then proposed that all mutations found in one molecule per cell should be removed. We detail our error correction method, demonstrating that the observed edge mutations are distinct from previously reported sequencing artifacts. We further show that the proposed removal leads to massive elimination of bona fide and informative mutations. Indeed, mutations accumulating on edges impact a minority of all mutation calls (for example, in hematopoietic stem cells, the excess mutations on the edge account for only 4.3%-7.6% of the total). Recognizing the value of addressing edge mutations even after applying consensus correction, we provide an additional filtering option in the ReDeeM-R package. This approach effectively eliminates the position biases, leads to a mutational signature indistinguishable from bona fide mitochondrial mutations, and removes excess low molecule high connectedness mutations. Importantly, this option preserves the large majority of unique mutations identified by ReDeeM, maintaining the ability of ReDeeM to provide a more than 10-fold increase in variant detection compared to previous methods. Additionally, the cells remain well-connected. While there is room for further refinement in mutation calling strategies, the significant advances and biological insights provided by the ReDeeM framework are unique and remain intact. We hope that this detailed discussion and analysis enables the community to employ this approach and contribute to its further development.

摘要

在单细胞中检测线粒体DNA(mtDNA)突变对于确定人类的克隆关系以及细胞状态信息具有巨大潜力。先前的方法聚焦于数量有限且可能受功能选择影响的高异质性突变,这会给谱系追踪带来偏差。尽管检测中低异质性mtDNA突变更具挑战性,但因其高度多样性、丰富性和较低的选择倾向,它们具有重要价值。为了增强mtDNA突变检测并促进精细谱系追踪,我们开发了单细胞深度线粒体突变谱调控多组学(ReDeeM)方法,这是一个集成的实验和计算框架。最近,有人对ReDeeM框架中的分析流程提出了一些担忧。具体而言,有人指出在每个细胞的单个分子中检测到的突变在mtDNA分子边缘富集,这表明它们类似于其他测序方法中报道的假象。于是有人提议应去除每个细胞中在一个分子中发现的所有突变。我们详细介绍了我们的纠错方法,证明观察到的边缘突变与先前报道的测序假象不同。我们进一步表明,提议的去除会导致大量真实且有信息价值的突变被消除。实际上,在边缘积累的突变只影响所有突变调用的一小部分(例如,在造血干细胞中,边缘上的额外突变仅占总数的4.3%-7.6%)。认识到即使应用了一致性校正后处理边缘突变的价值,我们在ReDeeM-R软件包中提供了一个额外的过滤选项。这种方法有效地消除了位置偏差,产生了与真实线粒体突变难以区分的突变特征,并去除了过多的低分子高连接性突变。重要的是,这个选项保留了ReDeeM识别出的绝大多数独特突变,保持了ReDeeM相比先前方法在变异检测方面增加超过10倍的能力。此外,细胞之间的连接仍然良好。虽然在突变调用策略方面还有进一步优化的空间,但ReDeeM框架所带来的重大进展和生物学见解是独特的且依然存在。我们希望这一详细的讨论和分析能使学界采用这种方法并为其进一步发展做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c57/11370557/e81c70ca3bce/nihpp-2024.08.23.609473v1-f0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验