Luebbers Alex, Janicot Remi, Zhao Jingyi, Philibert Clementine E, Garcia-Marcos Mikel
Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA.
Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
bioRxiv. 2024 Aug 22:2024.08.21.609006. doi: 10.1101/2024.08.21.609006.
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is not only a mechanism broadly used by eukaryotes to transduce signals across the plasma membrane, but also the target for a large fraction of clinical drugs. However, approaches typically used to assess this signaling mechanism by directly measuring G-protein activity, like optical biosensors, suffer from limitations. On one hand, many of these biosensors require expression of exogenous GPCRs and/or G-proteins, compromising readout fidelity. On the other hand, biosensors that measure endogenous signaling may still interfere with the signaling process under investigation or suffer from having a small dynamic range of detection, hindering broad applicability. Here, we developed an optical biosensor that detects the endogenous G-protein active species Gαi-GTP upon stimulation of endogenous GPCRs more robustly than current state-of-the-art sensors for the same purpose. Its design is based on the principle of bystander Bioluminescence Resonance Energy Transfer (BRET) and leverages the Gαi-binding protein named GINIP as a high affinity and specific detector module of the GTP-bound conformation of Gαi. We optimized this design to prevent interference with G-dependent signaling (cAMP inhibition) and to enable implementation in different experimental systems with endogenous GPCRs, including neurotransmitter receptors in primary astroglial cells or opioid receptors in cell lines, which revealed opioid neuropeptide-mediated activation profiles different from those observed with other biosensors involving exogenous GPCRs and G-proteins. Overall, we introduce a biosensor that directly and sensitively detects endogenous activation of G-proteins by GPCRs across different experimental settings without interfering with the subsequent propagation of signaling.
G蛋白偶联受体(GPCRs)激活异源三聚体G蛋白(Gαβγ)不仅是真核生物广泛用于跨质膜转导信号的一种机制,也是大部分临床药物的作用靶点。然而,通常用于通过直接测量G蛋白活性来评估这种信号传导机制的方法,如光学生物传感器,存在局限性。一方面,许多这些生物传感器需要表达外源性GPCRs和/或G蛋白,这会影响读数的保真度。另一方面,测量内源性信号传导的生物传感器可能仍然会干扰正在研究的信号传导过程,或者检测动态范围较小,从而阻碍了其广泛应用。在此,我们开发了一种光学生物传感器,它在刺激内源性GPCRs时,比目前用于相同目的的最先进传感器更能稳健地检测内源性G蛋白活性物种Gαi-GTP。其设计基于旁观者生物发光共振能量转移(BRET)原理,并利用名为GINIP的Gαi结合蛋白作为Gαi结合GTP构象的高亲和力和特异性检测模块。我们对该设计进行了优化,以防止干扰G依赖性信号传导(cAMP抑制),并使其能够在具有内源性GPCRs的不同实验系统中实现,包括原代星形胶质细胞中的神经递质受体或细胞系中的阿片受体,这些实验揭示了阿片神经肽介导的激活谱与其他涉及外源性GPCRs和G蛋白的生物传感器所观察到的不同。总体而言,我们引入了一种生物传感器,它可以在不同实验环境中直接且灵敏地检测GPCRs对内源性G蛋白的激活,而不会干扰信号的后续传播。