Alimohamadi Haleh, Luo Elizabeth Wei-Chia, Yang Rena, Gupta Shivam, Nolden Kelsey A, Mandal Taraknath, Blake Hill R, Wong Gerard C L
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA.
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
bioRxiv. 2024 Aug 20:2024.08.19.608723. doi: 10.1101/2024.08.19.608723.
Mitochondrial fission is controlled by dynamin proteins, the dysregulation of which is correlated with diverse diseases. Fission dynamins are GTP hydrolysis-driven mechanoenzymes that self-oligomerize into helical structures that constrict membrane to achieve fission, but details are not well understood. However, dynamins can also remodel membranes by inducing negative Gaussian curvature, the type of curvature required for completion of fission. Here, we examine how these drastically different mechanisms synergistically exert their influences on a membrane, via a mechanical model calibrated with small-angle X-ray scattering structural data. We find that free dynamin can trigger a "snap-through instability" that enforces a shape transition from an oligomer-confined cylindrical membrane to a drastically narrower catenoid-shaped neck within the spontaneous hemi-fission regime, in a manner that depends critically on the length of the confined tube. These results indicate how the combination of dynamin assembly, and paradoxically disassembly, can lead to diverse pathways to scission.
线粒体裂变由发动蛋白控制,其失调与多种疾病相关。裂变发动蛋白是由GTP水解驱动的机械酶,它们自组装成螺旋结构,通过收缩膜来实现裂变,但具体细节尚不清楚。然而,发动蛋白也可以通过诱导负高斯曲率来重塑膜,负高斯曲率是完成裂变所需的曲率类型。在这里,我们通过用小角X射线散射结构数据校准的力学模型,研究这些截然不同的机制如何协同作用于膜。我们发现,游离的发动蛋白可以引发一种“快速通过不稳定性”,这种不稳定性会在自发半裂变状态下强制膜从由寡聚体限制的圆柱形转变为极窄的链状颈部,其方式关键取决于受限管的长度。这些结果表明发动蛋白组装以及看似矛盾的解组装的结合如何导致多种分裂途径。