Suppr超能文献

通过与先前图像比较早期发现高密度基底动脉征

Early Detection of Hyperdense Basilar Artery Signs Through Comparison With Previous Images.

作者信息

Tanaka Tatsuya, Kumono Takahiro, Itokawa Hiroshi, Matsuno Akira

机构信息

Department of Neurosurgery, International University of Health and Welfare, Narita Hospital, Narita, JPN.

出版信息

Cureus. 2024 Aug 4;16(8):e66135. doi: 10.7759/cureus.66135. eCollection 2024 Aug.

Abstract

The presence of the hyperdense basilar artery (HDBA) sign, which indicates basilar artery occlusion (BAO), plays an important role in the early diagnosis and intervention in patients with acute ischemic stroke. However, qualitative and quantitative assessment of the HDBA sign is challenging. This case report describes a 60-year-old woman with a history of diabetes mellitus, hypertension, and cerebral infarction. She developed progressive loss of consciousness and ataxic respiration. A noncontrast-enhanced head computed tomography (CT) scan performed three hours after symptom onset revealed the HDBA sign compared with previously obtained CT images. Quantitative measurements revealed a significant increase in Hounsfield units (HUs) in the basilar artery. Subsequent three-dimensional CT angiography confirmed the occlusion of the vertebrobasilar artery. This case highlights the importance of comparing current and previous imaging findings in detecting the HDBA sign. Quantitative HU measurements may further aid diagnosis. Early detection of the HDBA sign on noncontrast-enhanced head CT is critical for expediting the diagnosis and treatment of BAO.

摘要

高密度基底动脉(HDBA)征提示基底动脉闭塞(BAO),在急性缺血性卒中患者的早期诊断和干预中起着重要作用。然而,对HDBA征进行定性和定量评估具有挑战性。本病例报告描述了一名60岁女性,有糖尿病、高血压和脑梗死病史。她出现进行性意识丧失和共济失调呼吸。症状发作三小时后进行的非增强头部计算机断层扫描(CT)显示,与之前获得的CT图像相比,出现了HDBA征。定量测量显示基底动脉的亨氏单位(HU)显著增加。随后的三维CT血管造影证实了椎基底动脉闭塞。本病例强调了在检测HDBA征时比较当前和先前影像学结果的重要性。HU定量测量可能有助于进一步诊断。在非增强头部CT上早期发现HDBA征对于加快BAO的诊断和治疗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fa9/11370986/d28aa0a69925/cureus-0016-00000066135-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验