Liu Yunsheng, Shao Da, Lou Shulei, Kou Zengwei
Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China.
Department of Neurosurgery, Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Front Physiol. 2024 Aug 20;15:1446459. doi: 10.3389/fphys.2024.1446459. eCollection 2024.
-methyl--aspartate (NMDA) receptors are heterotetrametric ion channels composed of two obligatory GluN1 subunits and two alternative GluN2 or GluN3 subunits, forming GluN1-N2, GluN1-N3, and GluN1-N2-N3 type of NMDA receptors. Extensive research has focused on the functional and structural properties of conventional GluN1-GluN2 NMDA receptors due to their early discovery and high expression levels. However, the knowledge of unconventional GluN1-N3 NMDA receptors remains limited. In this study, we modeled the GluN1-N3A, GluN1-N3B, and GluN1-N3A-N3B NMDA receptors using deep-learned protein-language predication algorithms AlphaFold and RoseTTAFold All-Atom. We then compared these structures with GluN1-N2 and GluN1-N3A receptor cryo-EM structures and found that GluN1-N3 receptors have distinct properties in subunit arrangement, domain swap, and domain interaction. Furthermore, we predicted the agonist- or antagonist-bound structures, highlighting the key molecular-residue interactions. Our findings shed new light on the structural and functional diversity of NMDA receptors and provide a new direction for drug development. This study uses advanced AI algorithms to model GluN1-N3 NMDA receptors, revealing unique structural properties and interactions compared to conventional GluN1-N2 receptors. By highlighting key molecular-residue interactions and predicting ligand-bound structures, our research enhances the understanding of NMDA receptor diversity and offers new insights for targeted drug development.
N-甲基-D-天冬氨酸(NMDA)受体是异源四聚体离子通道,由两个必需的GluN1亚基和两个可选的GluN2或GluN3亚基组成,形成GluN1-N2、GluN1-N3和GluN1-N2-N3类型的NMDA受体。由于传统的GluN1-GluN2 NMDA受体发现较早且表达水平高,广泛的研究集中在其功能和结构特性上。然而,对于非常规的GluN1-N3 NMDA受体的了解仍然有限。在本研究中,我们使用深度学习蛋白质语言预测算法AlphaFold和RoseTTAFold全原子对GluN1-N3A、GluN1-N3B和GluN1-N3A-N3B NMDA受体进行建模。然后我们将这些结构与GluN1-N2和GluN1-N3A受体的冷冻电镜结构进行比较,发现GluN1-N3受体在亚基排列、结构域交换和结构域相互作用方面具有独特的特性。此外,我们预测了激动剂或拮抗剂结合的结构,突出了关键的分子残基相互作用。我们的研究结果为NMDA受体的结构和功能多样性提供了新的线索,并为药物开发提供了新的方向。本研究使用先进的人工智能算法对GluN1-N3 NMDA受体进行建模,揭示了与传统GluN1-N2受体相比独特的结构特性和相互作用。通过突出关键的分子残基相互作用并预测配体结合结构,我们的研究增进了对NMDA受体多样性的理解,并为靶向药物开发提供了新的见解。