Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada.
Department of Biology, Indiana University, Bloomington, Indiana, USA.
mBio. 2024 Oct 16;15(10):e0100224. doi: 10.1128/mbio.01002-24. Epub 2024 Sep 4.
During its cell cycle, the bacterium switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the transition from the motile to the sessile lifestyle. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and promotes the motile lifestyle: HmrA (oldfast and otility egulator A). Genetic screens and genomic localization led to the identification of additional genes that form a putative phosphorelay pathway with HmrA. We postulate that the Hmr pathway acts as a rheostat to control the proportion of cells harboring a flagellum or a holdfast in the population. Further genetic analysis suggests that the Hmr pathway impacts c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Our results also indicate that the Hmr pathway is involved in the regulation of motile to sessile lifestyle transition as a function of various environmental factors: biofilm formation is repressed when excess copper is present and derepressed under non-optimal temperatures. Finally, we provide evidence that the Hmr pathway regulates motility and adhesion without modulating the transcription of the holdfast synthesis regulator HfiA.
Complex communities attached to a surface, or biofilms, represent the major lifestyle of bacteria in the environment. Such a sessile state enables the inhabitants to be more resistant to adverse environmental conditions. Thus, having a deeper understanding of the underlying mechanisms that regulate the transition between the motile and the sessile states could help design strategies to improve biofilms when they are beneficial or impede them when they are detrimental. For motile cells, the transition to the sessile lifestyle is irreversible, and this decision is regulated at several levels. In this work, we describe a putative phosphorelay that promotes the motile lifestyle and inhibits biofilm formation, providing new insights into the control of adhesin production that leads to the formation of biofilms.
在其细胞周期中,细菌从可移动的自由生活状态转变为附着在表面的静止细胞。在这个协调的过程中,细胞经历不可逆的形态变化,例如失去极性鞭毛和在同一极合成粘性固着器。在这项工作中,我们使用遗传筛选来鉴定参与从可移动到附着生活方式转变的调节的基因。我们鉴定了一种预测的混合组氨酸激酶,该激酶抑制生物膜形成并促进可移动的生活方式:HmrA(oldfast 和 otility egulator A)。遗传筛选和基因组定位导致鉴定了与 HmrA 形成假定磷酸传递途径的其他基因。我们假设 Hmr 途径作为变阻器来控制群体中携带鞭毛或固着器的细胞比例。进一步的遗传分析表明,Hmr 途径通过二鸟苷酸环化酶 DgcB 途径影响 c-di-GMP 的合成。我们的结果还表明,Hmr 途径作为各种环境因素的函数参与调节从可移动到附着生活方式的转变:当存在过量铜时,生物膜形成受到抑制,在非最佳温度下则解除抑制。最后,我们提供了证据表明 Hmr 途径调节运动性和粘附性,而不调节固着器合成调节剂 HfiA 的转录。
附着在表面上的复杂群落,或生物膜,代表了细菌在环境中的主要生活方式。这种附着状态使居民能够更好地抵抗不利的环境条件。因此,更深入地了解调节从可移动到附着状态的转变的潜在机制可以帮助设计在有益时改善生物膜或在有害时阻碍生物膜的策略。对于可移动细胞,向附着生活方式的转变是不可逆的,并且该决定受到几个水平的调节。在这项工作中,我们描述了一种假定的磷酸传递途径,该途径促进了可移动的生活方式并抑制了生物膜的形成,为控制导致生物膜形成的粘附素产生提供了新的见解。