Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
J Bacteriol. 2024 Nov 21;206(11):e0040424. doi: 10.1128/jb.00404-24. Epub 2024 Oct 18.
Bacteria find suitable locations for colonization by sensing and responding to surfaces. Complex signaling repertoires control surface colonization, and surface contact sensing by the flagellum plays a central role in activating colonization programs. adheres to surfaces using a polysaccharide adhesin called the holdfast. In , disruption of the flagellum through interactions with a surface or mutation of flagellar genes increases holdfast production. Our group previously identified several genes involved in flagellar surface sensing. One of these, , codes for a protein with homology to the flagellar C-ring protein FliN. We show here that a fluorescently tagged FssF protein localizes to the flagellated pole of the cell and requires all components of the flagellar C-ring for proper localization, supporting the model that FssF associates with the C-ring. Deleting results in a severe motility defect, which we show is due to a disruption of chemotaxis. Epistasis experiments demonstrate that promotes adhesion through a stator-dependent pathway when late-stage flagellar mutants are disrupted. Separately, we find that disruption of chemotaxis through deletion of or other chemotaxis genes results in a hyperadhesion phenotype. Key genes in the surface sensing network (, , and ) contribute to both ∆dependent and ∆dependent hyperadhesion, but these genes affect adhesion differently in the two hyperadhesive backgrounds. Our results support a model in which the stator subunits of the flagella incorporate both mechanical and chemical signals to regulate adhesion.IMPORTANCEBacterial biofilms pose a threat in clinical and industrial settings. Surface sensing is one of the first steps in biofilm formation. Studying surface sensing can improve our understanding of biofilm formation and develop preventative strategies. In this study, we use the freshwater bacterium to study surface sensing and the regulation of surface attachment. We characterize a previously unstudied gene, , and find that it localizes to the cell pole in the presence of three proteins that make up a component of the flagellum called the C-ring. Additionally, we find that is required for chemotaxis behavior but dispensable for swimming motility. Lastly, our results indicate that deletion of and other genes required for chemotaxis results in a hyperadhesive phenotype. These results support that surface sensing requires chemotaxis for a robust response to a surface.
细菌通过感知和响应表面来找到适合殖民的位置。复杂的信号转导谱控制着表面殖民化,而鞭毛的表面接触感应在激活殖民化程序中起着核心作用。 使用一种称为固着的多糖黏附素来附着在表面上。 在 中,通过与表面相互作用或突变鞭毛基因来破坏鞭毛会增加固着的产生。我们的小组先前确定了几个参与鞭毛表面感应的 基因。其中之一, ,编码一种与鞭毛 C 环蛋白 FliN 同源的蛋白质。我们在这里表明,荧光标记的 FssF 蛋白定位于细胞鞭毛状的极点,并且需要 C 环的所有成分才能正确定位,支持 FssF 与 C 环相关联的模型。 删除 会导致严重的运动缺陷,我们表明这是由于趋化作用的破坏。上位实验表明,当晚期鞭毛突变体被破坏时, 通过依赖定子的途径促进粘附。另外,我们发现通过 删除 或其他趋化基因来破坏趋化作用会导致超粘附表型。表面感应网络中的关键基因( , , 和 )既促进了 ∆ 依赖的超粘附,也促进了 ∆ 依赖的超粘附,但这些基因在这两种超粘附背景下对粘附的影响不同。我们的结果支持这样一种模型,即鞭毛的定子亚基整合了机械和化学信号来调节粘附。
细菌生物膜在临床和工业环境中构成威胁。表面感应是生物膜形成的第一步。研究表面感应可以提高我们对生物膜形成的理解并开发预防策略。在这项研究中,我们使用淡水细菌 来研究表面感应和表面附着的调节。我们描述了一个以前未研究过的基因 ,并发现它在存在构成鞭毛的一部分称为 C 环的三种蛋白质时定位于细胞极点。此外,我们发现 对于趋化行为是必需的,但对于游泳运动是可有可无的。最后,我们的结果表明, 删除趋化作用所需的基因会导致超粘附表型。这些结果表明,表面感应需要趋化作用才能对表面产生强烈的反应。