Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
J Virol. 2024 Oct 22;98(10):e0098624. doi: 10.1128/jvi.00986-24. Epub 2024 Sep 4.
Nipah virus (NiV) is a highly pathogenic paramyxovirus causing frequently lethal encephalitis in humans. The NiV genome is encapsidated by the nucleocapsid (N) protein. RNA synthesis is mediated by the viral RNA-dependent RNA polymerase (RdRP), consisting of the polymerase (L) protein complexed with the homo-tetrameric phosphoprotein (P). The advance of the polymerase along its template requires iterative dissolution and reformation of transient interactions between P and N protomers in a highly regulated process that remains poorly understood. This study applied functional and biochemical NiV polymerase assays to the problem. We mapped three distinct protein interfaces on the C-terminal P-X domain (P-XD), which form a triangular prism and engage L, the C-terminal N tail, and the globular N core, respectively. Transcomplementation assays using NiV L and N-tail binding-deficient mutants revealed that only one XD of a P tetramer binds to L, whereas three must be available for N-binding for efficient polymerase activity. The dissolution of the N-tail complex with P-XD was coordinated by a transient interaction between N-core and the α-1/2 face of this XD but not unoccupied XDs of the tetramer, creating a timer for coordinated polymerase advance.
Mononegaviruses comprise major human pathogens such as the Ebola virus, rabies virus, respiratory syncytial virus, measles virus, and Nipah virus (NiV). For replication and transcription, their polymerase complexes must negotiate a protein-encapsidated RNA genome, which requires the highly coordinated continuous formation and resolution of protein-protein interfaces as the polymerase advances along the template. The viral P protein assumes a central role in this process, but the molecular mechanism of ensuring polymerase mobility is poorly understood. Studying NiV polymerase complexes, we applied functional and biochemical assays to map three distinct interfaces in the NiV P XD and identified transient interactions between XD and the nucleocapsid core as instrumental in coordinating polymerase advance. These results define a conserved molecular principle regulating paramyxovirus polymerase dynamics and illuminate a promising druggable target for the structure-guided development of broad-spectrum polymerase inhibitors.
尼帕病毒(NiV)是一种高致病性副粘病毒,可导致人类经常致命的脑炎。NiV 基因组被核衣壳(N)蛋白包裹。RNA 合成由病毒 RNA 依赖性 RNA 聚合酶(RdRP)介导,由与同型四聚体磷蛋白(P)复合的聚合酶(L)蛋白组成。聚合酶沿着其模板前进需要在一个高度调控的过程中反复溶解和重新形成 P 和 N 原聚体之间的瞬时相互作用,而这个过程仍知之甚少。本研究应用功能性和生化 NiV 聚合酶测定法来解决这个问题。我们在 C 端 P-X 结构域(P-XD)上定位了三个不同的蛋白界面,这些界面分别形成一个三角棱柱,分别与 L、C 端 N 尾和球形 N 核心结合。使用 NiV L 和 N 尾结合缺陷突变体的转互补测定表明,只有一个 P 四聚体的 XD 与 L 结合,而三个 XD 必须与 N 结合才能有效发挥聚合酶活性。P-XD 与 N 尾复合物的溶解由 N 核心与 XD 的α-1/2 面之间的瞬时相互作用协调,但不与四聚体的未占据 XD 协调,为协调聚合酶前进创造了一个计时器。
单负链病毒包括主要的人类病原体,如埃博拉病毒、狂犬病病毒、呼吸道合胞病毒、麻疹病毒和尼帕病毒(NiV)。为了复制和转录,它们的聚合酶复合物必须协商一个蛋白质包裹的 RNA 基因组,这需要高度协调的连续形成和解决蛋白质-蛋白质界面,因为聚合酶沿着模板前进。病毒 P 蛋白在这个过程中起着核心作用,但确保聚合酶流动性的分子机制知之甚少。在研究 NiV 聚合酶复合物时,我们应用功能性和生化测定法来绘制 NiV P XD 中的三个不同界面,并确定 XD 与核衣壳核心之间的瞬时相互作用对于协调聚合酶前进至关重要。这些结果定义了一个调节副粘病毒聚合酶动力学的保守分子原理,并阐明了一个有前途的药物靶点,用于基于结构的广谱聚合酶抑制剂的开发。