Suppr超能文献

用于高效稳定钙钛矿太阳能电池的坚固螯合铅八面体表面

Robust chelated lead octahedron surface for efficient and stable perovskite solar cells.

作者信息

Wen Bin, Chen Tian, Yin Qixin, Xie Jiangsheng, Dai Chaohua, Lin Ruohao, Zhou Sicen, Yu Jiancan, Gao Pingqi

机构信息

School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China.

Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

出版信息

Nat Commun. 2024 Sep 4;15(1):7720. doi: 10.1038/s41467-024-52198-5.

Abstract

PbI octahedron as a fundamental framework endows the perovskite with excellent photoelectric properties, but also the defective and flimsy surface. Here, we report that the treatment of perovskite surface by bidentate ligands molecules N, N'-Dimethyl-1,2-ethanediamine can in-situ form a lead iodide chelates layer with excellently robust chelated lead octahedron, leading to effectively stabilize and passivate the underlying perovskite. The strong chelation with the lead enables the surface to largely inhibit the defects generation, iodide ion migration and skeleton collapse under external stimuli. It also prolongs the carrier lifetime and adjusts the surface energy-level of perovskite. The resultant perovskite solar cells deliver a power conversion efficiency of 25.7% (certified 25.04%) and retain >90% of their initial value after almost 1000 hours aging at maximum power point under simulated AM1.5 illumination.

摘要

碘化铅八面体作为基本框架赋予了钙钛矿优异的光电性能,但同时也存在缺陷且表面脆弱。在此,我们报道通过双齿配体分子N,N'-二甲基-1,2-乙二胺对钙钛矿表面进行处理,可以原位形成具有优异稳定性的螯合铅八面体的碘化铅螯合物层,从而有效稳定并钝化下层钙钛矿。与铅的强螯合作用使表面在很大程度上抑制了外部刺激下的缺陷产生、碘离子迁移和骨架坍塌。它还延长了载流子寿命并调整了钙钛矿的表面能级。所得的钙钛矿太阳能电池的功率转换效率为25.7%(认证值为25.04%),并且在模拟AM1.5光照下最大功率点几乎老化1000小时后仍保留其初始值的90%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d4/11374995/19d6341125c4/41467_2024_52198_Fig1_HTML.jpg

相似文献

1
Robust chelated lead octahedron surface for efficient and stable perovskite solar cells.
Nat Commun. 2024 Sep 4;15(1):7720. doi: 10.1038/s41467-024-52198-5.
2
Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells.
Nat Commun. 2020 Aug 25;11(1):4237. doi: 10.1038/s41467-020-18015-5.
5
Enhancing Performance and Stability of Perovskite Solar Cells through Surface Defect Passivation with Organic Bidentate Lewis Bases.
ACS Omega. 2022 Sep 2;7(36):32383-32392. doi: 10.1021/acsomega.2c03802. eCollection 2022 Sep 13.
7
Efficient and Stable CsPbI Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups.
Adv Mater. 2019 Jun;31(24):e1900605. doi: 10.1002/adma.201900605. Epub 2019 Apr 18.
8
Highly Efficient and Stable Perovskite Solar Cells Using an Effective Chelate-Assisted Defect Passivation Strategy.
ChemSusChem. 2020 Jan 19;13(2):412-418. doi: 10.1002/cssc.201902488. Epub 2019 Dec 13.
10
Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52643-52651. doi: 10.1021/acsami.0c14732. Epub 2020 Nov 15.

引用本文的文献

1
In Situ Construction of Multi-Functional Polymer Network Toward Durable Perovskite Solar Cells.
Adv Sci (Weinh). 2025 Jul;12(27):e2503417. doi: 10.1002/advs.202503417. Epub 2025 Apr 30.

本文引用的文献

1
Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands.
Science. 2024 Apr 12;384(6692):189-193. doi: 10.1126/science.adm9474. Epub 2024 Apr 11.
3
Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells.
Science. 2023 Nov 17;382(6672):810-815. doi: 10.1126/science.adk1633. Epub 2023 Nov 16.
4
Anion-π interactions suppress phase impurities in FAPbI solar cells.
Nature. 2023 Nov;623(7987):531-537. doi: 10.1038/s41586-023-06637-w. Epub 2023 Oct 18.
6
Tailoring passivators for highly efficient and stable perovskite solar cells.
Nat Rev Chem. 2023 Sep;7(9):632-652. doi: 10.1038/s41570-023-00510-0. Epub 2023 Jul 18.
7
Stabilization of photoactive phases for perovskite photovoltaics.
Nat Rev Chem. 2023 Jul;7(7):462-479. doi: 10.1038/s41570-023-00492-z. Epub 2023 Apr 26.
8
A multiscale ion diffusion framework sheds light on the diffusion-stability-hysteresis nexus in metal halide perovskites.
Nat Mater. 2023 Mar;22(3):329-337. doi: 10.1038/s41563-023-01488-2. Epub 2023 Feb 27.
9
Controlled growth of perovskite layers with volatile alkylammonium chlorides.
Nature. 2023 Apr;616(7958):724-730. doi: 10.1038/s41586-023-05825-y. Epub 2023 Feb 16.
10
Identifying the functional groups effect on passivating perovskite solar cells.
Sci Bull (Beijing). 2020 Oct 30;65(20):1726-1734. doi: 10.1016/j.scib.2020.05.031. Epub 2020 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验