Suppr超能文献

通过有机双齿路易斯碱进行表面缺陷钝化提高钙钛矿太阳能电池的性能和稳定性

Enhancing Performance and Stability of Perovskite Solar Cells through Surface Defect Passivation with Organic Bidentate Lewis Bases.

作者信息

Yan Weibo, Yang Wensheng, Zhang Kangjie, Yu Hui, Yang Yuntian, Fan Hao, Qi Yuanyuan, Xin Hao

机构信息

Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

出版信息

ACS Omega. 2022 Sep 2;7(36):32383-32392. doi: 10.1021/acsomega.2c03802. eCollection 2022 Sep 13.

Abstract

Organic Lewis bases [2,2'-bipyridine (BPY), 4-hydroxy-1,5-naphthyridine-3-carbonitrile (DQCN), and thenoyltrifluoroacetone (TTFA)] with bi-coordination sites of N and O were employed as perovskite surface defect passivants to address the efficiency and stability issues of perovskite solar cells (PSCs), with typical phenethylammonium iodide (PEAI) and piperazinium iodide (PI) passivants as reference. The surface properties of the perovskite films before and after passivation were characterized by Fourier-transform infrared, ultraviolet-visible, photoluminescence (PL), and time-resolved PL spectroscopy, X-ray diffraction, ultraviolet photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The characterizations reveal that BPY, DQCN, or TTFA forms coordination bonds with exposed "Pb", leading to a slight decrease in the highest occupied molecular orbital or lowest unoccupied molecular orbital energy level and bandgap. These passivants (especially TTFA) can passivate the perovskite surface defects to inhibit non-radiative recombination while having almost no influence on the grain size and surface morphology. Utilizing the passivated perovskite as the light absorption layer, solar cells with an inverted configuration of indium tin oxide/NiO /passivated MAPbCl I /C/BCP/Ag have been fabricated, and power conversion efficiencies of 19.22, 17.85, 16.49, 16.31, and 17.88% have been achieved from PEAI, PI, BPY, DQCN, and TTFA, respectively. All the device performance based on passivated perovskite is superior to that of the control (15.75%) owing to the reduced carrier recombination. The device from TTFA exhibits almost comparable efficiency to that of PEAI and PI controls, indicating that TTFA has an equal excellent passivation effect to state-of-the-art PEAI and PI. Furthermore, the devices based on BPY, DQCN, and TTFA show superior long-term stability with an efficiency loss of only 13.2, 16.7, and 12.9%, respectively, after being stored for 40 days in a ∼12% humidity, low-oxygen level environment, which is 45.4, 38.8, and 44.4% for the control, PEAI, and PI devices, respectively, primarily due to the improved hydrophobicity of the perovskite surface. Our results demonstrate that it is feasible to achieve high-efficiency and long-term-stable perovskite solar cells via selecting the appropriate molecules to passivate perovskite surface defects.

摘要

具有N和O双配位位点的有机路易斯碱[2,2'-联吡啶(BPY)、4-羟基-1,5-萘啶-3-腈(DQCN)和噻吩甲酰三氟丙酮(TTFA)]被用作钙钛矿表面缺陷钝化剂,以解决钙钛矿太阳能电池(PSC)的效率和稳定性问题,以典型的苯乙铵碘化物(PEAI)和哌嗪碘化物(PI)钝化剂作为参考。通过傅里叶变换红外光谱、紫外可见光谱、光致发光(PL)和时间分辨PL光谱、X射线衍射、紫外光电子能谱、扫描电子显微镜和原子力显微镜对钝化前后钙钛矿薄膜的表面性质进行了表征。表征结果表明,BPY、DQCN或TTFA与暴露的“Pb”形成配位键,导致最高占据分子轨道或最低未占据分子轨道能级和带隙略有降低。这些钝化剂(尤其是TTFA)可以钝化钙钛矿表面缺陷以抑制非辐射复合,同时对晶粒尺寸和表面形貌几乎没有影响。利用钝化后的钙钛矿作为光吸收层,制备了具有氧化铟锡/NiO /钝化的MAPbClI /C/BCP/Ag倒置结构的太阳能电池,PEAI、PI、BPY、DQCN和TTFA的功率转换效率分别达到了19.22%、17.85%、16.49%、16.31%和17.88%。由于载流子复合减少,所有基于钝化钙钛矿的器件性能均优于对照组(15.75%)。TTFA器件的效率与PEAI和PI对照组几乎相当,表明TTFA具有与最先进的PEAI和PI同等优异的钝化效果。此外,基于BPY、DQCN和TTFA的器件表现出优异的长期稳定性,在湿度约为12%、低氧水平的环境中储存40天后,效率损失分别仅为13.2%、16.7%和12.9%,而对照组、PEAI和PI器件的效率损失分别为45.4%、38.8%和44.4%,这主要是由于钙钛矿表面疏水性的提高。我们的结果表明,通过选择合适的分子钝化钙钛矿表面缺陷来实现高效和长期稳定的钙钛矿太阳能电池是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f4/9476505/ca5e590742c5/ao2c03802_0002.jpg

相似文献

1
Enhancing Performance and Stability of Perovskite Solar Cells through Surface Defect Passivation with Organic Bidentate Lewis Bases.
ACS Omega. 2022 Sep 2;7(36):32383-32392. doi: 10.1021/acsomega.2c03802. eCollection 2022 Sep 13.
2
Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2020 May 20;12(20):22992-23001. doi: 10.1021/acsami.0c04975. Epub 2020 May 6.
3
Highly Efficient and Stable Perovskite Solar Cells Using an Effective Chelate-Assisted Defect Passivation Strategy.
ChemSusChem. 2020 Jan 19;13(2):412-418. doi: 10.1002/cssc.201902488. Epub 2019 Dec 13.
4
Surface Passivation of Perovskite Solar Cells with Oxalic Acid: Increased Efficiency and Device Stability.
Chempluschem. 2023 Oct;88(10):e202300367. doi: 10.1002/cplu.202300367. Epub 2023 Oct 4.
5
Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40050-40061. doi: 10.1021/acsami.9b13952. Epub 2019 Oct 21.
6
Direct Surface Passivation of Perovskite Film by 4-Fluorophenethylammonium Iodide toward Stable and Efficient Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2558-2565. doi: 10.1021/acsami.0c17773. Epub 2021 Jan 8.
7
Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors.
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16485-16497. doi: 10.1021/acsami.1c02218. Epub 2021 Mar 30.
8
Improved Efficiency and Stability in 1,5-Diaminonaphthalene Iodide-Passivated 2D/3D Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2023 Nov 22;15(46):53351-53361. doi: 10.1021/acsami.3c09887. Epub 2023 Nov 13.
9
Fully Methylammonium-Free Stable Formamidinium Lead Iodide Perovskite Solar Cells Processed under Humid Air Conditions.
ACS Appl Mater Interfaces. 2023 Mar 15;15(10):13353-13362. doi: 10.1021/acsami.2c23134. Epub 2023 Feb 28.

引用本文的文献

1
Sulfur-Rich Hole-Transporting Materials for Inverted Perovskite Solar Cells.
Org Lett. 2025 Jul 4;27(26):6983-6988. doi: 10.1021/acs.orglett.5c01859. Epub 2025 Jun 19.

本文引用的文献

1
Perovskite solar cells with atomically coherent interlayers on SnO electrodes.
Nature. 2021 Oct;598(7881):444-450. doi: 10.1038/s41586-021-03964-8. Epub 2021 Oct 20.
4
Enhanced Efficiency and Stability of All-Inorganic CsPbI Br Perovskite Solar Cells by Organic and Ionic Mixed Passivation.
Adv Sci (Weinh). 2021 Sep;8(17):e2101367. doi: 10.1002/advs.202101367. Epub 2021 Jun 30.
5
Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells.
iScience. 2021 Mar 5;24(4):102276. doi: 10.1016/j.isci.2021.102276. eCollection 2021 Apr 23.
6
Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency.
J Am Chem Soc. 2020 Nov 25;142(47):20134-20142. doi: 10.1021/jacs.0c09845. Epub 2020 Nov 15.
7
Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide.
Science. 2019 Nov 8;366(6466):749-753. doi: 10.1126/science.aay7044.
8
Imperfections and their passivation in halide perovskite solar cells.
Chem Soc Rev. 2019 Jul 15;48(14):3842-3867. doi: 10.1039/c8cs00853a.
9
Influence of Cl Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):6022-6030. doi: 10.1021/acsami.8b19390. Epub 2019 Jan 30.
10
Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines.
ACS Cent Sci. 2018 Feb 28;4(2):216-222. doi: 10.1021/acscentsci.7b00454. Epub 2017 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验