Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
Deparment of Life Science, Mewar University, Chittorgarh, Rajasthan 312901, India.
Pathol Res Pract. 2024 Oct;262:155567. doi: 10.1016/j.prp.2024.155567. Epub 2024 Aug 29.
Modern cancer research depends heavily on the identification and validation of biomarkers because they provide important information about the diagnosis, prognosis, and response to treatment of the cancer. This review will provide a comprehensive overview of cancer biomarkers, including their development phases and recent breakthroughs in transcriptomics and computational techniques for detecting these biomarkers. Blood-based biomarkers have great potential for non-invasive tumor dynamics and treatment response monitoring. These include circulating tumor DNA, exosomes, and microRNAs. Comprehensive molecular profiles are provided by multi-omic technologies, which combine proteomics, metabolomics, and genomes to support the identification of biomarkers and the targeting of therapeutic interventions. Genetic changes are detected by next-generation sequencing, and patterns of protein expression are found by protein arrays and mass spectrometry. Tumor heterogeneity and clonal evolution can be understood using metabolic profiling and single-cell studies. It is projected that the use of several biomarkers-genetic, protein, mRNA, microRNA, and DNA profiles, among others-will rise, enabling multi-biomarker analysis and improving individualised treatment plans. Biomarker identification and patient outcome prediction are further improved by developments in AI algorithms and imaging techniques. Robust biomarker validation and reproducibility require cooperation between industry, academia, and doctors. Biomarkers can provide individualized care, meet unmet clinical needs, and enhance patient outcomes despite some obstacles. Precision medicine will continue to take shape as scientific research advances and the integration of biomarkers with cutting-edge technologies continues to offer a more promising future for personalized cancer care.
现代癌症研究严重依赖于生物标志物的鉴定和验证,因为它们提供了有关癌症诊断、预后和治疗反应的重要信息。这篇综述将全面介绍癌症生物标志物,包括它们的开发阶段以及转录组学和计算技术在检测这些生物标志物方面的最新突破。基于血液的生物标志物在非侵入性肿瘤动态监测和治疗反应监测方面具有巨大潜力。这些生物标志物包括循环肿瘤 DNA、外泌体和 microRNAs。多组学技术提供了全面的分子谱,它结合了蛋白质组学、代谢组学和基因组学,支持生物标志物的鉴定和治疗干预的靶向。下一代测序检测遗传变化,蛋白质阵列和质谱检测蛋白质表达模式。代谢组学和单细胞研究可以理解肿瘤异质性和克隆进化。预计会出现使用多种生物标志物——包括遗传、蛋白质、mRNA、microRNA 和 DNA 谱等——的情况,从而能够进行多生物标志物分析并改进个体化治疗方案。人工智能算法和成像技术的发展进一步提高了生物标志物的识别和患者预后预测能力。稳健的生物标志物验证和可重复性需要行业、学术界和医生之间的合作。生物标志物可以提供个体化护理,满足未满足的临床需求,并提高患者的治疗效果,尽管存在一些障碍。随着科学研究的进展和生物标志物与前沿技术的不断结合,精准医学将继续发展,为个性化癌症护理提供更有前途的未来。