Suppr超能文献

用于癌症诊疗的共价有机框架:推进生物标志物检测和肿瘤靶向治疗

Covalent organic frameworks in cancer theranostics: advancing biomarker detection and tumor-targeted therapy.

作者信息

Iranpour Sonia, Abrishami Amir, Saljooghi Amir Sh

机构信息

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

Arch Pharm Res. 2025 Mar;48(3):183-211. doi: 10.1007/s12272-025-01536-2. Epub 2025 Mar 22.

Abstract

In recent years, covalent organic frameworks (COFs) have garnered considerable attention in the field of onco-nanotechnology as a new type of nanoporous construct due to their promising physicochemical properties, ease of modification, and ability to be coupled with several moieties and therapeutic molecules. They can not only be used as biocompatible nanocarriers to deliver therapeutic payloads to the tumor zone selectively but can also be combined with a variety of therapeutic modalities to achieve the desired treatments. This review comprehensively presented recent achievements and progress in COF-based cancer diagnosis, detection, and cancer therapy to provide a better prospect for further research. Herein our primary emphasis lies on exploring the application of COFs as potential sensors for cancer-derived biomarkers that have received comparatively less attention in previous discussions. While the utilization of COFs in solid tumor therapy has faced significant challenges in scientific research and clinical applications, we reviewed the most promising features that underscore their potential in cancer theranostics.

摘要

近年来,共价有机框架(COFs)作为一种新型的纳米多孔结构,因其具有良好的物理化学性质、易于修饰以及能够与多种基团和治疗分子偶联的能力,在肿瘤纳米技术领域受到了广泛关注。它们不仅可以作为生物相容性纳米载体,将治疗药物选择性地输送到肿瘤区域,还可以与多种治疗方式相结合,以实现理想的治疗效果。本文综述全面介绍了基于COF的癌症诊断、检测和癌症治疗方面的最新成果和进展,为进一步研究提供了更好的前景。在此,我们主要着重于探索COFs作为癌症衍生生物标志物潜在传感器的应用,这在以往的讨论中相对较少受到关注。虽然COFs在实体瘤治疗中的应用在科研和临床应用中面临重大挑战,但我们回顾了突出其在癌症诊疗中潜力的最具前景的特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验