Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
Biomaterials. 2025 Feb;313:122768. doi: 10.1016/j.biomaterials.2024.122768. Epub 2024 Aug 30.
As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).
作为女性生育力保存中最突出和理想的方式,卵巢组织冷冻保存和移植常常面临着无血管移植导致的缺血损伤和卵泡损失的挑战。为了克服这一障碍,我们设计了一种新型血小板衍生因子包被纤维蛋白水凝胶(PFH),这是一种典范的生物材料。PFH 包封了自体血小板衍生因子,利用生理血液凝固级联反应精确地局部递送生物活性分子。在我们的研究中,PFH 显著提高了无血管卵巢组织移植的成功率。值得注意的是,卵泡的数量和质量得到了保存,同时伴随着新生血管的增加,DNA 损伤减少,排卵增加,在低浓度血小板富血浆衍生因子包被纤维蛋白水凝胶(L-PFH)方案下胚胎发育率更高。在组织移植稳定点,基因表达分析反映了正常卵巢组织的特征,这表明 L-PFH 在减轻初始缺血损伤方面是有效的。这种源自于自然的自体血液衍生生物材料利用了血液凝固级联反应,并结合了可生物降解性、生物相容性、安全性和成本效益。这种生物材料的可调特性,甚至在可注射形式下,也扩展了其在更广泛的个性化再生医学领域的潜在应用。PFH 作为一种对抗组织移植中缺血损伤的有前途的策略,代表了更广泛的治疗前景。