Suppr超能文献

使用机器学习模型在精神医学研究和临床实践中面临的挑战。

The challenges of using machine learning models in psychiatric research and clinical practice.

机构信息

School of Biological and Chemical Sciences and School of Psychology, Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland.

Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany.

出版信息

Eur Neuropsychopharmacol. 2024 Nov;88:53-65. doi: 10.1016/j.euroneuro.2024.08.005. Epub 2024 Sep 3.

Abstract

To understand the complex nature of heterogeneous psychiatric disorders, scientists and clinicians are required to employ a wide range of clinical, endophenotypic, neuroimaging, genomic, and environmental data to understand the biological mechanisms of psychiatric illness before this knowledge is applied into clinical setting. Machine learning (ML) is an automated process that can detect patterns from large multidimensional datasets and can supersede conventional statistical methods as it can detect both linear and non-linear relationships. Due to this advantage, ML has potential to enhance our understanding, improve diagnosis, prognosis and treatment of psychiatric disorders. The current review provides an in-depth examination of, and offers practical guidance for, the challenges encountered in the application of ML models in psychiatric research and clinical practice. These challenges include the curse of dimensionality, data quality, the 'black box' problem, hyperparameter tuning, external validation, class imbalance, and data representativeness. These challenges are particularly critical in the context of psychiatry as it is expected that researchers will encounter them during the stages of ML model development and deployment. We detail practical solutions and best practices to effectively mitigate the outlined challenges. These recommendations have the potential to improve reliability and interpretability of ML models in psychiatry.

摘要

为了理解异质精神障碍的复杂性质,科学家和临床医生需要利用广泛的临床、内表型、神经影像学、基因组和环境数据,在将这些知识应用于临床环境之前,了解精神疾病的生物学机制。机器学习 (ML) 是一种自动化过程,可以从大型多维数据集中检测模式,并且可以取代传统的统计方法,因为它可以检测线性和非线性关系。由于这一优势,机器学习有可能增强我们对精神障碍的理解,改善诊断、预后和治疗。本综述深入探讨了在精神科研究和临床实践中应用机器学习模型时遇到的挑战,并提供了实用的指导。这些挑战包括维度诅咒、数据质量、“黑箱”问题、超参数调整、外部验证、类别不平衡和数据代表性。这些挑战在精神病学领域尤为关键,因为研究人员预计在机器学习模型开发和部署的各个阶段都会遇到这些挑战。我们详细介绍了实用的解决方案和最佳实践,可以有效地减轻所概述的挑战。这些建议有可能提高精神病学中机器学习模型的可靠性和可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验