Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.
Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.
Biosens Bioelectron. 2024 Dec 15;266:116725. doi: 10.1016/j.bios.2024.116725. Epub 2024 Aug 30.
Surface-enhanced Raman spectroscopy (SERS) is a powerful method in analytical chemistry, but its application in real-life medical settings has been limited due to technical challenges. In this work, we introduce an innovative approach that is meant to advance the automation of microfluidics SERS to improve reproducibility and label-free quantification of two widely used therapeutic drugs, methotrexate (MTX) and lamotrigine (LTG), in human serum. Our methodology involves a miniaturized solid-phase extraction (μ-SPE) method coupled to a centrifugal microfluidics disc with incorporated SERS substrates (CD-SERS). The CD-SERS platform enables simultaneous controlled sample wetting and accurate SERS mapping. Together with the assay we implemented a machine learning method based on Partial Least Squares Regression (PLSR) for robust data analysis and drug quantification. The results indicate that combining μ-SPE with CD-SERS (μ-SPE to CD-SERS) led to a substantial improvement in the signal-to-noise ratio compared to combining CD-SERS with ultrafiltration or protein precipitation. The PLSR model enabled us to obtain the limit of detection and quantification for MTX as 2.90 and 8.92 μM, respectively, and for LTG as 10.76 and 32.29 μM. We also validated our μ-SPE to CD-SERS method for MTX against HPLC and immunoassay (p-value <0.05), using patient samples undergoing MTX therapy. In addition, we achieved a satisfactory recovery rate (80%) for LTG when quantifying it in patient samples. Our results show the potential of this newly developed approach as a strategy for therapeutic drugs in point-of-care clinical settings and highlight the benefits of automating label-free SERS assays.
表面增强拉曼光谱(SERS)是分析化学中一种强大的方法,但由于技术挑战,其在实际医疗环境中的应用受到限制。在这项工作中,我们引入了一种创新方法,旨在推进微流控 SERS 的自动化,以提高两种广泛使用的治疗药物甲氨蝶呤(MTX)和拉莫三嗪(LTG)在人血清中重现性和无标记定量的能力。我们的方法涉及一种小型化固相萃取(μ-SPE)方法,与带有内置 SERS 基底的离心微流控盘(CD-SERS)相结合。CD-SERS 平台能够同时进行受控的样品润湿和准确的 SERS 映射。与该测定法一起,我们实施了一种基于偏最小二乘回归(PLSR)的机器学习方法,用于稳健的数据分析和药物定量。结果表明,与超滤或蛋白质沉淀相结合相比,将 μ-SPE 与 CD-SERS 相结合(μ-SPE 至 CD-SERS)可显著提高信噪比。PLSR 模型使我们能够分别获得 MTX 的检测限和定量限,分别为 2.90 和 8.92 μM,以及 LTG 的检测限和定量限,分别为 10.76 和 32.29 μM。我们还使用正在接受 MTX 治疗的患者样本,针对 MTX 将我们的 μ-SPE 至 CD-SERS 方法与 HPLC 和免疫测定法进行了验证(p 值 <0.05)。此外,当在患者样本中定量 LTG 时,我们实现了 80%的回收率。我们的结果表明,这种新开发的方法具有在即时护理临床环境中用于治疗药物的潜力,并强调了自动化无标记 SERS 测定法的优势。