Suppr超能文献

基于 4D-MRI 提取脉搏波速度的个体化顺应性模拟框架:TEVAR 后的应用。

Patient-specific compliant simulation framework informed by 4DMRI-extracted pulse wave Velocity: Application post-TEVAR.

机构信息

University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.

Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, Bern 3010, Switzerland.

出版信息

J Biomech. 2024 Oct;175:112266. doi: 10.1016/j.jbiomech.2024.112266. Epub 2024 Aug 22.

Abstract

We introduce a new computational framework that utilises Pulse Wave Velocity (PWV) extracted directly from 4D flow MRI (4DMRI) to inform patient-specific compliant computational fluid dynamics (CFD) simulations of a Type-B aortic dissection (TBAD), post-thoracic endovascular aortic repair (TEVAR). The thoracic aortic geometry, a 3D inlet velocity profile (IVP) and dynamic outlet boundary conditions are derived from 4DMRI and brachial pressure patient data. A moving boundary method (MBM) is applied to simulate aortic wall displacement. The aortic wall stiffness is estimated through two methods: one relying on area-based distensibility and the other utilising regional pulse wave velocity (RPWV) distensibility, further fine-tuned to align with in vivo values. Predicted pressures and outlet flow rates were within 2.3 % of target values. RPWV-based simulations were more accurate in replicating in vivo hemodynamics than the area-based ones. RPWVs were closely predicted in most regions, except the endograft. Systolic flow reversal ratios (SFRR) were accurately captured, while differences above 60 % in in-plane rotational flow (IRF) between the simulations were observed. Significant disparities in predicted wall shear stress (WSS)-based indices were observed between the two approaches, especially the endothelial cell activation potential (ECAP). At the isthmus, the RPWV-driven simulation indicated a mean ECAP>1.4 Pa (critical threshold), indicating areas potentially prone to thrombosis, not captured by the area-based simulation. RPWV-driven simulation results agree well with 4DMRI measurements, validating the proposed pipeline and facilitating a comprehensive assessment of surgical decision-making scenarios and potential complications, such as thrombosis and aortic growth.

摘要

我们介绍了一种新的计算框架,该框架利用直接从 4D 流 MRI(4DMRI)中提取的脉搏波速度(PWV),为 B 型主动脉夹层(TBAD)、胸主动脉腔内修复术(TEVAR)后的患者特异性顺应性计算流体动力学(CFD)模拟提供信息。胸主动脉几何形状、三维入口速度剖面(IVP)和动态出口边界条件是从 4DMRI 和肱动脉患者数据中得出的。采用移动边界方法(MBM)来模拟主动脉壁位移。通过两种方法估计主动脉壁的弹性:一种依赖于基于面积的可扩展性,另一种利用基于区域的脉搏波速度(RPWV)可扩展性,并进一步进行微调以与体内值匹配。预测压力和出口流量与目标值的偏差在 2.3%以内。基于 RPWV 的模拟比基于面积的模拟更能准确地复制体内血流动力学。除了移植物内,大多数区域都能很好地预测 RPWV。准确捕捉收缩期血流反转比(SFRR),而在模拟中观察到平面内旋转流(IRF)之间的差异超过 60%。两种方法之间观察到基于壁切应力(WSS)的指数预测存在显著差异,特别是内皮细胞激活潜力(ECAP)。在峡部,基于 RPWV 的模拟表明平均 ECAP>1.4 Pa(临界阈值),表明存在潜在的血栓形成区域,而基于面积的模拟无法捕捉到这些区域。RPWV 驱动的模拟结果与 4DMRI 测量值吻合良好,验证了所提出的管道,并促进了对手术决策场景和潜在并发症(如血栓形成和主动脉生长)的全面评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验