School of Information and Communication Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116024, China.
Neurosci Lett. 2024 Nov 1;842:137956. doi: 10.1016/j.neulet.2024.137956. Epub 2024 Sep 2.
Eye movement dysfunction is one of the non-motor symptoms of Parkinson's disease (PD). An accurate analysis method for eye movement is an effective way to gain a deeper understanding of the nervous system function of PD patients. However, currently, there are only a few assistive methods available to help physicians conveniently and consistently assess patients suspected of having PD. To solve this problem, we proposed a novel visual behavioral analysis method using eye tracking to evaluate eye movement dysfunction in PD patients automatically. This method first provided a physician task simulation to induce PD-related eye movements in Virtual Reality (VR). Subsequently, we extracted eye movement features from recorded eye videos and applied a machine learning algorithm to establish a PD diagnostic model. Then, we collected eye movement data from 66 participants (including 22 healthy controls and 44 PD patients) in a VR environment for training and testing during visual tasks. Finally, on this relatively small dataset, the results reveal that the Support Vector Machine (SVM) algorithm has better classification potential.
眼球运动障碍是帕金森病(PD)的非运动症状之一。准确的眼球运动分析方法是深入了解 PD 患者神经系统功能的有效途径。然而,目前只有少数辅助方法可帮助医生方便且一致地评估疑似 PD 的患者。为了解决这个问题,我们提出了一种使用眼动追踪的新型视觉行为分析方法,以便自动评估 PD 患者的眼球运动障碍。该方法首先提供了一种医生任务模拟,以在虚拟现实(VR)中诱导与 PD 相关的眼球运动。然后,我们从记录的眼球视频中提取眼球运动特征,并应用机器学习算法来建立 PD 诊断模型。接下来,我们在 VR 环境中收集了 66 名参与者(包括 22 名健康对照者和 44 名 PD 患者)的眼球运动数据,用于视觉任务的训练和测试。最后,在这个相对较小的数据集上,结果表明支持向量机(SVM)算法具有更好的分类潜力。