Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
Int J Biol Macromol. 2024 Nov;279(Pt 2):135220. doi: 10.1016/j.ijbiomac.2024.135220. Epub 2024 Sep 2.
Pneumocandin B (PB) is a lipopeptide produced by the fungus Glarea lozoyensis. The existing challenges with the low-yield and the extended-fermentation cycle emphasize necessity for strain improvement. In this study, we optimized conditions to obtain high-quality protoplasts and screened effective selection markers, leading to the construction of three CRISPR/Cas9 gene editing systems. Utilizing a constitutive Cas9 expression recipient strain, combined with dual sgRNAs targeting, we achieved highly efficient editing of target genes. We successfully knocked out 10 genes within the pneumocandin putative biosynthetic gene cluster and analyzed their roles in PB production. Our findings reveal that 4 of 10 genes are directly involved in PB production. Specially, the deletion of gltrt or gl10050 resulted in reduced PB production, while the absence of glhyp or glhtyC led to the complete loss of PB biosynthesis. Notably, the deletion of glhyp caused the silencing of nearly all cluster genes, whereas overexpression of glhyp led to a 2.38-fold increase in PB production. Therefore, this study provides the first comprehensive exploration of the functions of 10 genes within the pneumocandin putative biosynthetic gene cluster. Our findings provide valuable technical strategies for constructing bioengineering strains with purposefully enhanced PB production.
多烯菌素 B(PB)是一种由真菌 Glarea lozoyensis 产生的脂肽。目前存在的产量低和发酵周期长的挑战强调了菌株改良的必要性。在这项研究中,我们优化了条件以获得高质量的原生质体,并筛选了有效的选择标记,从而构建了三个 CRISPR/Cas9 基因编辑系统。利用组成型 Cas9 表达受体菌株,结合靶向双 sgRNA,我们实现了靶基因的高效编辑。我们成功敲除了 10 个多烯菌素假定生物合成基因簇中的基因,并分析了它们在 PB 生产中的作用。我们的研究结果表明,10 个基因中有 4 个直接参与 PB 生产。特别地,gltrt 或 gl10050 的缺失导致 PB 产量降低,而 glhyp 或 glhtyC 的缺失导致 PB 生物合成完全丧失。值得注意的是,glhyp 的缺失导致几乎所有簇基因的沉默,而过表达 glhyp 导致 PB 产量增加 2.38 倍。因此,本研究首次全面探索了 10 个多烯菌素假定生物合成基因簇内基因的功能。我们的研究结果为构建具有增强 PB 生产目的的工程菌株提供了有价值的技术策略。