文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高产制霉菌素B的代谢工程。 (注:原文“pneumocandin B”有误,根据语境推测可能是“pneumocandin B0”,准确译文应为“用于高产制霉菌素B0的代谢工程” ,但按照你要求不添加解释说明,所以给出上述译文 )

Metabolic engineering of for high-level production of pneumocandin B.

作者信息

Zhang Xinyi, Cheng Shu, Yang Jing, Lu Li, Deng Zixin, Bian Guangkai, Liu Tiangang

机构信息

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China.

Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.

出版信息

Synth Syst Biotechnol. 2024 Dec 24;10(2):381-390. doi: 10.1016/j.synbio.2024.12.008. eCollection 2025 Jun.


DOI:10.1016/j.synbio.2024.12.008
PMID:39830076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11742615/
Abstract

Pneumocandin B (PB) is a lipohexapeptide synthesized by and serves as the precursor for the widely used antifungal drug caspofungin acetate (Cancidas®). However, the low titer of PB results in fermentation and purification costs during caspofungin production, limiting its widespread clinical application. Here, we engineered an efficient PB-producing strain of by systems metabolic engineering strategies, including multi-omics analysis and multilevel metabolic engineering. We overexpressed four rate-limiting enzymes: thioesterase GLHYD, two cytochrome P450s GLP450s, and chorismate synthase GLCS; knocked out two competing pathways responsible for producing 6-methylsalicylic acid and pyranidine E; and overexpressed the global transcriptional activator GLHYP. As a result, the PB titer increased by 108.7 % to 2.63 g/L at the shake-flask level through combinatorial strategies. Our study provides valuable insights into achieving high-level production of PB and offers general guidance for developing efficient fungal cell factories to produce polyketide synthase-non-ribosomal peptide synthetase hybrid metabolites.

摘要

棘白菌素B(PB)是一种由[具体合成菌]合成的脂环六肽,是广泛使用的抗真菌药物醋酸卡泊芬净(Cancidas®)的前体。然而,PB的低产量导致卡泊芬净生产过程中的发酵和纯化成本较高,限制了其广泛的临床应用。在此,我们通过系统代谢工程策略,包括多组学分析和多层次代谢工程,构建了一株高效生产PB的[具体菌株]。我们过表达了四种限速酶:硫酯酶GLHYD、两种细胞色素P450酶GLP450s和分支酸合酶GLCS;敲除了两条负责生产6-甲基水杨酸和吡喃啶E的竞争途径;并过表达了全局转录激活因子GLHYP。结果,通过组合策略,摇瓶水平下PB的产量提高了108.7%,达到2.63 g/L。我们的研究为实现PB的高水平生产提供了有价值的见解,并为开发高效的真菌细胞工厂生产聚酮合酶-非核糖体肽合成酶杂合代谢产物提供了一般指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/a96b91392c3a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/18fb137368b3/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/4e3c1ccd688f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/ca2fbad14542/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/9d99795475b8/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/8d2da6e3f36b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/0d4856f39b73/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/3ef547417b6e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/a96b91392c3a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/18fb137368b3/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/4e3c1ccd688f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/ca2fbad14542/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/9d99795475b8/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/8d2da6e3f36b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/0d4856f39b73/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/3ef547417b6e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/11742615/a96b91392c3a/gr7.jpg

相似文献

[1]
Metabolic engineering of for high-level production of pneumocandin B.

Synth Syst Biotechnol. 2024-12-24

[2]
Exploration of the pneumocandin biosynthetic gene cluster based on efficient CRISPR/Cas9 gene editing strategy in Glarea lozoyensis.

Int J Biol Macromol. 2024-11

[3]
Glyap1 regulates pneumocandin B synthesis by controlling the intracellular redox balance in Glarea lozoyensis.

Appl Microbiol Biotechnol. 2021-9

[4]
CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus and Its Application in Manipulating .

ACS Synth Biol. 2020-8-21

[5]
Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis.

BMC Genomics. 2013-5-20

[6]
Engineering of Glarea lozoyensis for exclusive production of the pneumocandin B0 precursor of the antifungal drug caspofungin acetate.

Appl Environ Microbiol. 2015-3

[7]
Effect of fatty acids on intracellular pneumocandin B storage in the fermentation of Glarea lozoyensis.

Bioresour Bioprocess. 2023-9-19

[8]
Comparative Transcriptomics Analysis of the Responses of the Filamentous Fungus to Different Carbon Sources.

Front Microbiol. 2020-2-18

[9]
Novel osmotic stress control strategy for improved pneumocandin B production in Glarea lozoyensis combined with a mechanistic analysis at the transcriptome level.

Appl Microbiol Biotechnol. 2018-11-10

[10]
Engineering of New Pneumocandin Side-Chain Analogues from Glarea lozoyensis by Mutasynthesis and Evaluation of Their Antifungal Activity.

ACS Chem Biol. 2016-10-21

引用本文的文献

[1]
Strategies Used for the Discovery of New Microbial Metabolites with Antibiotic Activity.

Molecules. 2025-7-6

本文引用的文献

[1]
Exploration of the pneumocandin biosynthetic gene cluster based on efficient CRISPR/Cas9 gene editing strategy in Glarea lozoyensis.

Int J Biol Macromol. 2024-11

[2]
Global diversity and biogeography of potential phytopathogenic fungi in a changing world.

Nat Commun. 2023-10-14

[3]
Metabolic Engineering of for Vitamin B5 Production.

J Agric Food Chem. 2023-5-17

[4]
Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica.

Bioresour Technol. 2023-8

[5]
antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation.

Nucleic Acids Res. 2023-7-5

[6]
Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1.

Nature. 2023-4

[7]
Improving the production of the micafungin precursor FR901379 in an industrial production strain.

Microb Cell Fact. 2023-3-6

[8]
Heterologous Expression of the Plant-Derived Astaxanthin Biosynthesis Pathway in for Glycosylated Astaxanthin Production.

J Agric Food Chem. 2023-2-15

[9]
Multiple Functions of the Type II Thioesterase Associated with the Phoslactomycin Polyketide Synthase.

Biochemistry. 2022-12-6

[10]
Characterization of an Exceptional Fungal Mutant Enables the Discovery of the Specific Regulator of a Silent PKS-NRPS Hybrid Biosynthetic Pathway.

J Agric Food Chem. 2022-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索