Ye Shenghua, Chen Wenda, Ou Zhijun, Zhang Qinghao, Zhang Jie, Li Yongliang, Ren Xiangzhong, Ouyang Xiaoping, Zheng Lirong, Yan Xueqing, Liu Jianhong, Zhang Qianling
State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, 100871, China.
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414989. doi: 10.1002/anie.202414989. Epub 2024 Oct 28.
Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt-based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni-doped vacancy-rich Pt nanoparticles anchored on nitrogen-doped graphene (Vac-NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic-scale vacancies in the Pt NPs induces long-range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic-scale vacancies mainly contributed the tolerance performances towards CO and CHOH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic-scale vacancies and ligand effect, as-prepared Vac-NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal-based nanomaterials.
缺陷工程是调节纳米材料电催化性能的有效策略,但在调控用于氧还原反应(ORR)的铂基电催化剂方面却很少被考虑。在本研究中,我们设计了负载量低至3.5 wt . %且镍/铂比为0.038 : 1的、锚定在氮掺杂石墨烯上的镍掺杂富空位铂纳米颗粒(Vac-NiPt NPs/NG)。物理表征证实,铂纳米颗粒中大量原子尺度的空位会引起长程晶格畸变,镍掺杂剂会产生配体效应,导致电子从镍转移到铂。实验结果和理论计算表明,原子尺度的空位主要贡献了对一氧化碳和甲醇的耐受性能,微量镍掺杂剂产生的配体效应加速了从O到OH物种的转化,从而在不损害耐受能力的情况下提高了ORR活性。得益于原子尺度空位和配体效应之间的协同相互作用,所制备的Vac-NiPt NPs/NG表现出改善的ORR活性、足够的耐受能力和优异的耐久性。本研究为调控金属基纳米材料的电催化活性提供了一条新途径。