Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
Adv Mater. 2024 Nov;36(44):e2407239. doi: 10.1002/adma.202407239. Epub 2024 Sep 5.
Nitrogen (N) conversion to ammonia (NH) in a mild condition is a big chemical challenge. The whole-cell diazotrophs based biological NH synthesis is one of the most promising strategies. Herein, the first attempt of photoelectrochemical-microbial (PEC-MB) biohybrid is contributed for artificial N fixation, where Azotobacter vinelandii (A. vinelandii) is interfaced directly with polydopamine encapsulated nickel oxide (NiO) nanosheets (NiO@PDA). By virtue of excellent bio-adhesive activity, high conductivity, and good biocompatibility of PDA layer, abundant A. vinelandii are effectively adsorbed on NiO@PDA to form NiO@PDA/A. vinelandii biohybrid, and the rationally designed biohybrid achieved a record-high NH production yield of 1.85µmol h/10 cells (4.14 µmol h cm). In addition, this biohybrid can operate both under illumination with a PEC model or in dark with an electrocatalytic (EC) model to implement long-term and successional NH synthesis. The enhancement mechanism of NH synthesis in NiO@PDA/A. vinelandii biohybrid can be ascribed to the increase of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5-triphosphate (ATP) concentrations and over expression of nitrogen-fixing genes of nifH, nifD and nifK in nitrogenase. This innovative PEC-MB biohybrid strategy sheds light on the fundamental mechanism and establishes proof of concept of biotic-abiotic photosynthetic systems for sustainable chemical production.
在温和条件下将氮(N)转化为氨(NH)是一个巨大的化学挑战。基于全细胞固氮生物的 NH 合成是最有前途的策略之一。本文首次尝试光电化学-微生物(PEC-MB)生物杂化用于人工 N 固定,其中将固氮菌(A. vinelandii)直接与聚多巴胺封装的氧化镍(NiO)纳米片(NiO@PDA)相连接。由于 PDA 层具有出色的生物粘附活性、高导电性和良好的生物相容性,大量的 A. vinelandii 有效地被吸附在 NiO@PDA 上,形成 NiO@PDA/A. vinelandii 生物杂化体,所设计的生物杂化体实现了创纪录的 1.85µmol h/10 个细胞(4.14µmol h cm)的 NH 产量。此外,该生物杂化体可以在光照下的 PEC 模型或黑暗中的电催化(EC)模型下运行,以实现长期和连续的 NH 合成。在 NiO@PDA/A. vinelandii 生物杂化体中,NH 合成的增强机制可归因于烟酰胺腺嘌呤二核苷酸-氢(NADH)和三磷酸腺苷(ATP)浓度的增加,以及固氮酶中氮固定基因 nifH、nifD 和 nifK 的过度表达。这种创新的 PEC-MB 生物杂化策略为生物-非生物光合作用系统的基本机制提供了启示,并为可持续的化学生产建立了生物-非生物光合作用系统的概念验证。