Suppr超能文献

光电催化-微生物杂化用于氮还原。

Photoelectrocatalytic-Microbial Biohybrid for Nitrogen Reduction.

机构信息

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.

出版信息

Adv Mater. 2024 Nov;36(44):e2407239. doi: 10.1002/adma.202407239. Epub 2024 Sep 5.

Abstract

Nitrogen (N) conversion to ammonia (NH) in a mild condition is a big chemical challenge. The whole-cell diazotrophs based biological NH synthesis is one of the most promising strategies. Herein, the first attempt of photoelectrochemical-microbial (PEC-MB) biohybrid is contributed for artificial N fixation, where Azotobacter vinelandii (A. vinelandii) is interfaced directly with polydopamine encapsulated nickel oxide (NiO) nanosheets (NiO@PDA). By virtue of excellent bio-adhesive activity, high conductivity, and good biocompatibility of PDA layer, abundant A. vinelandii are effectively adsorbed on NiO@PDA to form NiO@PDA/A. vinelandii biohybrid, and the rationally designed biohybrid achieved a record-high NH production yield of 1.85µmol h/10 cells (4.14 µmol h cm). In addition, this biohybrid can operate both under illumination with a PEC model or in dark with an electrocatalytic (EC) model to implement long-term and successional NH synthesis. The enhancement mechanism of NH synthesis in NiO@PDA/A. vinelandii biohybrid can be ascribed to the increase of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5-triphosphate (ATP) concentrations and over expression of nitrogen-fixing genes of nifH, nifD and nifK in nitrogenase. This innovative PEC-MB biohybrid strategy sheds light on the fundamental mechanism and establishes proof of concept of biotic-abiotic photosynthetic systems for sustainable chemical production.

摘要

在温和条件下将氮(N)转化为氨(NH)是一个巨大的化学挑战。基于全细胞固氮生物的 NH 合成是最有前途的策略之一。本文首次尝试光电化学-微生物(PEC-MB)生物杂化用于人工 N 固定,其中将固氮菌(A. vinelandii)直接与聚多巴胺封装的氧化镍(NiO)纳米片(NiO@PDA)相连接。由于 PDA 层具有出色的生物粘附活性、高导电性和良好的生物相容性,大量的 A. vinelandii 有效地被吸附在 NiO@PDA 上,形成 NiO@PDA/A. vinelandii 生物杂化体,所设计的生物杂化体实现了创纪录的 1.85µmol h/10 个细胞(4.14µmol h cm)的 NH 产量。此外,该生物杂化体可以在光照下的 PEC 模型或黑暗中的电催化(EC)模型下运行,以实现长期和连续的 NH 合成。在 NiO@PDA/A. vinelandii 生物杂化体中,NH 合成的增强机制可归因于烟酰胺腺嘌呤二核苷酸-氢(NADH)和三磷酸腺苷(ATP)浓度的增加,以及固氮酶中氮固定基因 nifH、nifD 和 nifK 的过度表达。这种创新的 PEC-MB 生物杂化策略为生物-非生物光合作用系统的基本机制提供了启示,并为可持续的化学生产建立了生物-非生物光合作用系统的概念验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验