Suppr超能文献

基于RSVP的协作式脑机接口的组成员选择

Group-member selection for RSVP-based collaborative brain-computer interfaces.

作者信息

Si Yuan, Wang Zhenyu, Xu Guiying, Wang Zikai, Xu Tianheng, Zhou Ting, Hu Honglin

机构信息

Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Neurosci. 2024 Aug 21;18:1402154. doi: 10.3389/fnins.2024.1402154. eCollection 2024.

Abstract

OBJECTIVE

The brain-computer interface (BCI) systems based on rapid serial visual presentation (RSVP) have been widely utilized for the detection of target and non-target images. Collaborative brain-computer interface (cBCI) effectively fuses electroencephalogram (EEG) data from multiple users to overcome the limitations of low single-user performance in single-trial event-related potential (ERP) detection in RSVP-based BCI systems. In a multi-user cBCI system, a superior group mode may lead to better collaborative performance and lower system cost. However, the key factors that enhance the collaboration capabilities of multiple users and how to further use these factors to optimize group mode remain unclear.

APPROACH

This study proposed a group-member selection strategy to optimize the group mode and improve the system performance for RSVP-based cBCI. In contrast to the conventional grouping of collaborators at random, the group-member selection strategy enabled pairing each user with a better collaborator and allowed tasks to be done with fewer collaborators. Initially, we introduced the maximum individual capability and maximum collaborative capability (MIMC) to select optimal pairs, improving the system classification performance. The sequential forward floating selection (SFFS) combined with MIMC then selected a sub-group, aiming to reduce the hardware and labor expenses in the cBCI system. Moreover, the hierarchical discriminant component analysis (HDCA) was used as a classifier for within-session conditions, and the Euclidean space data alignment (EA) was used to overcome the problem of inter-trial variability for cross-session analysis.

MAIN RESULTS

In this paper, we verified the effectiveness of the proposed group-member selection strategy on a public RSVP-based cBCI dataset. For the two-user matching task, the proposed MIMC had a significantly higher AUC and TPR and lower FPR than the common random grouping mode and the potential group-member selection method. Moreover, the SFFS with MIMC enabled a trade-off between maintaining performance and reducing the number of system users.

SIGNIFICANCE

The results showed that our proposed MIMC effectively optimized the group mode, enhanced the classification performance in the two-user matching task, and could reduce the redundant information by selecting the sub-group in the RSVP-based multi-user cBCI systems.

摘要

目的

基于快速序列视觉呈现(RSVP)的脑机接口(BCI)系统已被广泛用于检测目标和非目标图像。协作脑机接口(cBCI)有效地融合了多个用户的脑电图(EEG)数据,以克服基于RSVP的BCI系统在单次试验事件相关电位(ERP)检测中单个用户性能较低的局限性。在多用户cBCI系统中,一种优越的分组模式可能会带来更好的协作性能和更低的系统成本。然而,增强多个用户协作能力的关键因素以及如何进一步利用这些因素来优化分组模式仍不明确。

方法

本研究提出了一种组成员选择策略,以优化基于RSVP的cBCI的分组模式并提高系统性能。与传统的随机分组协作方式不同,组成员选择策略能够将每个用户与更好的协作对象配对,并允许用更少的协作人员完成任务。最初,我们引入最大个体能力和最大协作能力(MIMC)来选择最优对,提高系统分类性能。然后,将顺序向前浮动选择(SFFS)与MIMC相结合来选择一个子组,旨在降低cBCI系统中的硬件和人力成本。此外,分层判别成分分析(HDCA)被用作会话内条件的分类器,欧几里得空间数据对齐(EA)被用于克服跨会话分析中的试验间变异性问题。

主要结果

在本文中,我们在一个基于RSVP的公共cBCI数据集上验证了所提出的组成员选择策略的有效性。对于双用户匹配任务,所提出的MIMC比普通随机分组模式和潜在组成员选择方法具有显著更高的曲线下面积(AUC)和真阳性率(TPR)以及更低的假阳性率(FPR)。此外,带有MIMC的SFFS能够在保持性能和减少系统用户数量之间进行权衡。

意义

结果表明,我们提出的MIMC有效地优化了分组模式,增强了双用户匹配任务中的分类性能,并且在基于RSVP的多用户cBCI系统中通过选择子组可以减少冗余信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55eb/11371794/7fc37ea1d9be/fnins-18-1402154-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验