IEEE Trans Neural Syst Rehabil Eng. 2022;30:1223-1232. doi: 10.1109/TNSRE.2022.3173079. Epub 2022 May 16.
The aim of this study is to maximize group decision performance by optimally adapting EEG confidence decoders to the group composition. We train linear support vector machines to estimate the decision confidence of human participants from their EEG activity. We then simulate groups of different size and membership by combining individual decisions using a weighted majority rule. The weights assigned to each participant in the group are chosen solving a small-dimension, mixed, integer linear programming problem, where we maximize the group performance on the training set. We therefore introduce optimized collaborative brain-computer interfaces (BCIs), where the decisions of each team member are weighted according to both the individual neural activity and the group composition. We validate this approach on a face recognition task undertaken by 10 human participants. The results show that optimal collaborative BCIs significantly enhance team performance over other BCIs, while improving fairness within the group. This research paves the way for practical applications of collaborative BCIs to realistic scenarios characterized by stable teams, where optimizing the decision policy of a single group may lead to significant long-term benefits of team dynamics.
本研究旨在通过将 EEG 置信解码器最优地适配于群体组成,来最大化群体决策性能。我们训练线性支持向量机,根据人类参与者的 EEG 活动来估计他们的决策置信度。然后,我们通过使用加权多数规则组合个体决策来模拟不同大小和成员组成的群体。通过求解一个小维度的混合整数线性规划问题,为群体中的每个参与者分配权重,我们在训练集上最大化群体性能。因此,我们引入了优化的协作脑机接口 (BCI),其中根据个体神经活动和群体组成来加权每个团队成员的决策。我们在由 10 名人类参与者进行的人脸识别任务上验证了这种方法。结果表明,最优协作 BCI 显著提高了团队的表现,优于其他 BCI,同时提高了群体内的公平性。这项研究为协作 BCI 在具有稳定团队的现实场景中的实际应用铺平了道路,在这些场景中,优化单个群体的决策策略可能会对团队动态带来显著的长期利益。