Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Anal Chem. 2024 Sep 17;96(37):15050-15058. doi: 10.1021/acs.analchem.4c03495. Epub 2024 Sep 5.
An efficient electrochemiluminescence (ECL) emitter, Ir(ppy)-based molecules has recently been reported to exhibit aggregation-induced electrochemiluminescence (AIECL) phenomenon. However, it remains a significant challenge to control the aggregation states of these molecules and achieve uniform aggregates with intense ECL emission. In this work, a biosensor was developed to detect microcystin-LR (MC-LR) based on Ir(ppy)-functionalized zeolitic imidazolate framework-8 (Ir-ZIF-8) as the ECL emitter and the -cleavage activity of CRISPR-Cas12a as the methodological strategy. The Ir-ZIF-8, a functional metal-organic framework (MOF), exhibited the AIECL phenomenon via the spatial domain-limiting effect of encapsulating Ir(ppy) into the mesopores of ZIF-8, while the porosity and highly ordered topological structure of ZIF-8 effectively limited the molecular motion of Ir(ppy). CRISPR-Cas12a was employed to indiscriminately cleave double-stranded DNA decorated with carboxy tetramethylrhodamine (TAMRA), which quenched the ECL signal of Ir-ZIF-8 by resonance energy transfer and then separated the quencher from Ir-ZIF-8 to reactivate the signal. The concentration of MC-LR was designed to correlate with both the quencher amount and the activity of Cas12a. Then, two linear regression equations for MC-LR detection were constructed to improve the accuracy of the biosensor, and the constructed biosensor showed remarkable reproducibility, stability, and selectivity. The accurate detection of MC-LR with limits of detection of 1.2 and 5.9 pg/mL was made possible by the high quenching efficiency of TAMRA and the effective cutting ability of the editable CRISPR-Cas12a system.
一种高效的电致化学发光(ECL)发射器,基于 Ir(ppy) 的分子最近被报道表现出聚集诱导电致化学发光(AIECL)现象。然而,控制这些分子的聚集状态并实现具有强烈 ECL 发射的均匀聚集仍然是一个重大挑战。在这项工作中,开发了一种基于 Ir(ppy) 功能化沸石咪唑酯骨架-8(Ir-ZIF-8)作为 ECL 发射器和 CRISPR-Cas12a 的 -切割活性的生物传感器来检测微囊藻毒素-LR(MC-LR)。Ir-ZIF-8 是一种功能性金属有机骨架(MOF),通过将 Ir(ppy) 封装在 ZIF-8 的介孔中,表现出 AIECL 现象,而 ZIF-8 的多孔性和高度有序的拓扑结构有效地限制了 Ir(ppy) 的分子运动。CRISPR-Cas12a 被用于无差别地切割带有羧基四甲基罗丹明(TAMRA)修饰的双链 DNA,TAMRA 通过共振能量转移猝灭 Ir-ZIF-8 的 ECL 信号,然后将猝灭剂与 Ir-ZIF-8 分离以重新激活信号。MC-LR 的浓度被设计为与淬灭剂的量和 Cas12a 的活性相关。然后,构建了两个用于 MC-LR 检测的线性回归方程,以提高生物传感器的准确性,构建的生物传感器表现出出色的重现性、稳定性和选择性。TAMRA 的高猝灭效率和可编辑的 CRISPR-Cas12a 系统的有效切割能力使得能够对 MC-LR 进行准确检测,检测限为 1.2 和 5.9 pg/mL。