Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Anal Chem. 2022 Jun 7;94(22):7861-7867. doi: 10.1021/acs.analchem.2c00295. Epub 2022 May 22.
Since aggregation-induced electrochemiluminescence (AIECL) combined the merits of aggregation-induced emission (AIE) and electrochemiluminescence (ECL), it has become a research hotspot recently. Herein, novel kinds of functional metal-organic frameworks (MOFs) with strong AIECL were reported through doping tetraphenylethylene (TPE) into UiO-66. Due to the porosity and highly ordered topological structure that caused the confinement effect of MOFs, the molecular motion of TPE was effectively limited within UiO-66, resulting in strong AIE. Meanwhile, the large specific surface area and porous structure of UiO-66 allowed TPE to react with coreactants more effectively, which was beneficial to ECL. Thus, the TPE-functionalized UiO-66 (TPE-UiO-66) showed excellent AIECL performance surprisingly. Inspired by this, a multiple convertible ECL resonance energy transfer (ECL-RET) system was constructed through a DNA Y structure that regulated the distance between the energy donor (TPE-UiO-66) and different energy acceptors (gold nanoparticles and Adriamycin). Furthermore, an ultrasensitive ECL biosensor for the detection of Mucin 1 (MUC1) was developed through the introduction of the novel ECL-RET system. In the presence of MUC1, the DNA Y structure was constructed, keeping the gold nanoparticles (AuNPs) away from TPE-UiO-66. Then, Adriamycin (Dox) could be embedded in the DNA Y structure and act as an energy acceptor to receive the energy of TPE-UiO-66, which made the biosensor produce a strong ECL response. As expected, the developed ECL biosensor exhibited superior detection performance for MUC1. This work provided a novel way to realize AIECL and board the application of AIECL in analytical chemistry.
由于聚集诱导电化学发光(AIECL)结合了聚集诱导发光(AIE)和电化学发光(ECL)的优点,因此它最近成为了一个研究热点。本文通过将四苯乙烯(TPE)掺杂到 UiO-66 中,报道了新型具有强 AIECL 的功能金属有机骨架(MOFs)。由于 MOFs 的多孔性和高度有序的拓扑结构导致了限制效应,TPE 的分子运动在 UiO-66 内得到了有效限制,从而产生了强 AIE。同时,UiO-66 的大比表面积和多孔结构使得 TPE 能够更有效地与反应物反应,这有利于 ECL。因此,TPE 功能化的 UiO-66(TPE-UiO-66)表现出了出色的 AIECL 性能。受此启发,通过 DNA Y 结构构建了一种可转换的多重电化学发光共振能量转移(ECL-RET)系统,该结构调节了能量供体(TPE-UiO-66)与不同能量受体(金纳米粒子和阿霉素)之间的距离。此外,通过引入新型 ECL-RET 系统,开发了一种用于检测粘蛋白 1(MUC1)的超灵敏 ECL 生物传感器。在存在 MUC1 的情况下,构建了 DNA Y 结构,使金纳米粒子(AuNPs)远离 TPE-UiO-66。然后,阿霉素(Dox)可以嵌入 DNA Y 结构中并作为能量受体接收 TPE-UiO-66 的能量,这使得生物传感器产生强烈的 ECL 响应。不出所料,开发的 ECL 生物传感器对 MUC1 表现出了优异的检测性能。这项工作为实现 AIECL 提供了一种新途径,并将 AIECL 应用于分析化学。