Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA.
Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA.
J Chem Phys. 2024 Sep 7;161(9). doi: 10.1063/5.0224809.
We develop a multiscale coarse-grain model of the NIST Monoclonal Antibody Reference Material 8671 (NISTmAb) to enable systematic computational investigations of high-concentration physical instabilities such as phase separation, clustering, and aggregation. Our multiscale coarse-graining strategy captures atomic-resolution interactions with a computational approach that is orders of magnitude more efficient than atomistic models, assuming the biomolecule can be decomposed into one or more rigid bodies with known, fixed structures. This method reduces interactions between tens of thousands of atoms to a single anisotropic interaction site. The anisotropic interaction between unique pairs of rigid bodies is precomputed over a discrete set of relative orientations and stored, allowing interactions between arbitrarily oriented rigid bodies to be interpolated from the precomputed table during coarse-grained Monte Carlo simulations. We present this approach for lysozyme and lactoferrin as a single rigid body and for the NISTmAb as three rigid bodies bound by a flexible hinge with an implicit solvent model. This coarse-graining strategy predicts experimentally measured radius of gyration and second osmotic virial coefficient data, enabling routine Monte Carlo simulation of medically relevant concentrations of interacting proteins while retaining atomistic detail. All methodologies used in this work are available in the open-source software Free Energy and Advanced Sampling Simulation Toolkit.
我们开发了 NIST 单克隆抗体参考物质 8671(NISTmAb)的多尺度粗粒模型,以能够对高浓度物理不稳定性(如相分离、聚集和聚集)进行系统的计算研究。我们的多尺度粗粒化策略采用了一种计算方法,能够捕捉原子分辨率的相互作用,其效率比原子模型高出几个数量级,假设生物分子可以分解为一个或多个具有已知固定结构的刚体。该方法将成千上万的原子之间的相互作用减少到一个单一的各向异性相互作用位点。独特刚体对之间的各向异性相互作用在离散的相对取向集合上进行预先计算,并存储起来,允许在粗粒化蒙特卡罗模拟中从预先计算的表中插值任意取向刚体之间的相互作用。我们将这种方法应用于溶菌酶和乳铁蛋白作为单个刚体,以及 NISTmAb 作为通过柔性铰链连接的三个刚体,并采用隐溶剂模型。这种粗粒化策略预测了实验测量的回转半径和第二渗透压系数数据,能够在保留原子细节的同时,对具有医学相关性的相互作用蛋白进行常规蒙特卡罗模拟。本工作中使用的所有方法都可在开源软件 Free Energy and Advanced Sampling Simulation Toolkit 中获得。