Suppr超能文献

使用距离和方向相关的能量表加速分子蒙特卡罗模拟:从原子精度调整到平滑的“粗粒化”模型。

Accelerating molecular Monte Carlo simulations using distance and orientation-dependent energy tables: tuning from atomistic accuracy to smoothed "coarse-grained" models.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Comput Chem. 2012 Jan 30;33(3):268-75. doi: 10.1002/jcc.21970. Epub 2011 Nov 25.

Abstract

Typically, the most time consuming part of any atomistic molecular simulation is the repeated calculation of distances, energies, and forces between pairs of atoms. However, many molecules contain nearly rigid multi-atom groups such as rings and other conjugated moieties, whose rigidity can be exploited to significantly speed-up computations. The availability of GB-scale random-access memory (RAM) offers the possibility of tabulation (precalculation) of distance- and orientation-dependent interactions among such rigid molecular bodies. Here, we perform an investigation of this energy tabulation approach for a fluid of atomistic-but rigid-benzene molecules at standard temperature and density. In particular, using O(1) GB of RAM, we construct an energy look-up table, which encompasses the full range of allowed relative positions and orientations between a pair of whole molecules. We obtain a hardware-dependent speed-up of a factor of 24-50 as compared to an ordinary ("exact") Monte Carlo simulation and find excellent agreement between energetic and structural properties. Second, we examine the somewhat reduced fidelity of results obtained using energy tables based on much less memory use. Third, the energy table serves as a convenient platform to explore potential energy smoothing techniques, akin to coarse-graining. Simulations with smoothed tables exhibit near atomistic accuracy while increasing diffusivity. The combined speed-up in sampling from tabulation and smoothing exceeds a factor of 100. For future applications, greater speed-ups can be expected for larger rigid groups, such as those found in biomolecules.

摘要

通常,任何原子分子模拟中最耗时的部分是反复计算原子对之间的距离、能量和力。然而,许多分子包含几乎刚性的多原子基团,如环和其他共轭部分,其刚性可以被利用来显著加速计算。GB 级别的随机存取存储器 (RAM) 的可用性提供了对这种刚性分子体之间的距离和方向相关相互作用进行制表 (预先计算) 的可能性。在这里,我们对刚性苯分子流体在标准温度和密度下的这种能量制表方法进行了研究。特别是,我们使用 1GB 的 GB 内存构建了一个能量查找表,它涵盖了一对完整分子之间允许的相对位置和取向的全部范围。与普通(“精确”)蒙特卡罗模拟相比,我们获得了 24-50 倍的硬件依赖性加速,并且发现能量和结构性质之间存在极好的一致性。其次,我们研究了使用基于更少内存的能量表获得的结果的稍低保真度。第三,能量表可作为探索类似于粗粒化的潜在能量平滑技术的便捷平台。使用平滑表进行的模拟表现出接近原子的准确性,同时增加了扩散性。从制表和平滑中进行采样的组合加速超过 100 倍。对于未来的应用,可以预期对于更大的刚性基团(例如在生物分子中发现的那些)会有更大的加速。

相似文献

本文引用的文献

1
4
Equilibrium sampling in biomolecular simulations.生物分子模拟中的平衡采样。
Annu Rev Biophys. 2011;40:41-62. doi: 10.1146/annurev-biophys-042910-155255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验