Suppr超能文献

准一维多核壳结构MnSe@N掺杂碳纳米棒作为钠离子电池高性能负极材料的合理设计

Rational Design of Quasi-1D Multicore-Shell MnSe@N-Doped Carbon Nanorods as High-Performance Anode Material for Sodium-Ion Batteries.

作者信息

Wang Lei, Huang Fei, Song Xinmei, Li Jiayi, Zhu Guoyin, Jin Zhong, Dai Zhihui

机构信息

School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China.

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.

出版信息

Nano Lett. 2024 Sep 18;24(37):11349-11357. doi: 10.1021/acs.nanolett.4c01408. Epub 2024 Sep 5.

Abstract

Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g at 5 A g) and long lifespan (132.7 mA h g after 2000 cycles at 5 A g), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.

摘要

钠离子电池(SIBs)因其钠的低成本和低氧化还原电位而被认为是储能设备中很有前景的候选者之一。然而,由于转换型负极材料的导电性差、晶格劣化和体积变化导致的动力学迟缓以及快速的容量衰减,阻碍了它们的应用。在此,我们报道了一种基于包裹有N掺杂碳(MnSe@NC)纳米棒的硒化锰(MnSe)纳米颗粒的多核壳负极材料的设计。受益于导电的多核壳结构,MnSe@NC负极表现出突出的倍率性能(在5 A g下为152.7 mA h g)和长寿命(在5 A g下2000次循环后为132.7 mA h g),验证了高性能SIBs合理负极结构的本质。系统的微观和光谱方法揭示了MnSe@NC的高度可逆转换反应机制。我们的研究为开发先进的过渡金属硒化物负极以及理解高性能SIBs的电化学反应机制提出了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验