Hu Le, He Liqing, Wang Xin, Shang Chaoqun, Zhou Guofu
Guangdong Provincial Key Laboratory of Optical Information Materials, South China Normal University, Guangzhou 510006, People's Republic of China.
Nanotechnology. 2020 Aug 14;31(33):335402. doi: 10.1088/1361-6528/ab8e78. Epub 2020 Apr 29.
MnSe with high theoretical capacity and reversibility is considered as a promising material for the anode of sodium ion batteries. In this study, MnSe nanoparticles embedded in 1D carbon nanofibers (MnSe-NC) are successfully prepared via facile electrospinning and subsequent selenization. A carbon framework can effectively protect MnSe dispersed in it from agglomeration and can accommodate volume variation in the conversion reaction between MnSe and Na to guarantee cycling stability. The 1D fiber structure can increase the area of contact between electrode and electrolyte to shorten the diffusion path of Na and facilitate its transfer. According to the kinetic analysis, the storage process of sodium by MnSe-NC is a surface pseudocapacitive-controlled process with promising rate capability. Impressively, An MnSe-NC anode in sodium ion full cells is investigated by pairing with an NaV(PO)@rGO cathode, which exhibits a reversible capacity of 195 mA h g at 0.1 A g.
具有高理论容量和可逆性的MnSe被认为是一种有前途的钠离子电池负极材料。在本研究中,通过简便的静电纺丝和后续硒化成功制备了嵌入一维碳纳米纤维中的MnSe纳米颗粒(MnSe-NC)。碳框架可以有效地保护分散在其中的MnSe不发生团聚,并能适应MnSe与Na之间转化反应中的体积变化,从而保证循环稳定性。一维纤维结构可以增加电极与电解质之间的接触面积,缩短Na的扩散路径并促进其传输。根据动力学分析,MnSe-NC储钠过程是一个表面赝电容控制过程,具有良好的倍率性能。令人印象深刻的是,通过与NaV(PO)@rGO正极配对,研究了钠离子全电池中的MnSe-NC负极,其在0.1 A g下表现出195 mA h g的可逆容量。