State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
Yuelushan Laboratory, Changsha 410082, China.
Plant Cell. 2024 Nov 2;36(11):4752-4767. doi: 10.1093/plcell/koae248.
Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.
多种植物激素,包括独脚金内酯(SL),在调控开花时间方面发挥着关键作用。拟南芥(Arabidopsis thaliana)矮化蛋白 14(AtD14)受体感知 SL,并招募 F-box 蛋白 MORE AXILLARY GROWTH2(MAX2)和 SUPPRESSOR OF MAX2-LIKE(SMXL)家族蛋白。这些相互作用导致 SMXL 抑制蛋白的降解,从而调节分枝、叶片形状和其他发育过程。然而,SL 调节植物开花的分子机制仍不清楚。在这里,我们证明完整的独脚金内酯生物合成和信号转导途径对于拟南芥的正常开花是必不可少的。SL 生物合成(max3)和信号转导(Atd14 和 max2)途径的功能丧失突变体表现出较早的开花,而抑制子三重突变体 smxl6/7/8(s678)则表现出相反的表型。AtD14 在细胞质中的保留导致其无法抑制开花。此外,我们表明,核定位的 AtD14 采用双重策略来增强 AP2 转录因子 TARGET OF EAT1(TOE1)的功能。AtD14 以 SL 依赖的方式直接与 TOE1 结合并稳定它。此外,AtD14 介导的 SMXL7 降解释放 TOE1 从抑制蛋白中,使其能够结合并抑制开花基因(FT)启动子。这导致 FT 转录减少和开花延迟。总之,AtD14 对 SL 的感知使转录因子 TOE1 能够抑制开花,为植物开花的激素控制提供了新的见解。