Suppr超能文献

基于物理信息的可编程超表面逆向设计

Physics-Informed Inverse Design of Programmable Metasurfaces.

作者信息

Xu Yucheng, Yang Jia-Qi, Fan Kebin, Wang Sheng, Wu Jingbo, Zhang Caihong, Zhan De-Chuan, Padilla Willie J, Jin Biaobing, Chen Jian, Wu Peiheng

机构信息

Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China.

Purple Mountain Laboratories, Nanjing, 211111, China.

出版信息

Adv Sci (Weinh). 2024 Nov;11(41):e2406878. doi: 10.1002/advs.202406878. Epub 2024 Sep 5.

Abstract

Emerging reconfigurable metasurfaces offer various possibilities for programmatically manipulating electromagnetic waves across spatial, spectral, and temporal domains, showcasing great potential for enhancing terahertz applications. However, they are hindered by limited tunability, particularly evident in relatively small phase tuning over 270°, due to the design constraints with time-intensive forward design methodologies. Here, a multi-bit programmable metasurface is demonstrated capable of terahertz beam steering facilitated by a developed physics-informed inverse design (PIID) approach. Through integrating a modified coupled mode theory (MCMT) into residual neural networks, the PIID algorithm not only significantly increases the design accuracy compared to conventional neural networks but also elucidates the intricate physical relations between the geometry and the modes. Without decreasing the reflection intensity, the method achieves the enhanced phase tuning as large as 300°. Additionally, the inverse-designed programmable beam steering metasurface is experimentally validated, which is adaptable across 1-bit, 2-bit, and tri-state coding schemes, yielding a deflection angle up to 68° and broadened steering coverage. The demonstration provides a promising pathway for rapidly exploring advanced metasurface devices, with potentially great impact on communication and imaging technologies.

摘要

新兴的可重构超表面为跨空间、频谱和时间域以编程方式操纵电磁波提供了各种可能性,在增强太赫兹应用方面展现出巨大潜力。然而,由于耗时的正向设计方法的设计限制,它们的可调谐性有限,尤其是在270°以上相对较小的相位调谐中表现明显。在此,展示了一种多位可编程超表面,它能够通过一种先进的物理信息逆设计(PIID)方法实现太赫兹波束转向。通过将改进的耦合模理论(MCMT)集成到残差神经网络中,PIID算法不仅与传统神经网络相比显著提高了设计精度,还阐明了几何结构与模式之间复杂的物理关系。该方法在不降低反射强度的情况下,实现了高达300°的增强相位调谐。此外,通过实验验证了逆设计的可编程波束转向超表面,它适用于1位、2位和三态编码方案,产生高达68°的偏转角和拓宽的转向覆盖范围。这一演示为快速探索先进的超表面器件提供了一条有前景的途径,对通信和成像技术可能产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f95/11538652/98084fc5ad49/ADVS-11-2406878-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验