Li Xiaoqiang, Guan Guangguang, Tong Siyi, Cheng Bingjie, Xiang Jun, Zhao Tingting, Zhang Kaiyin
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Institute of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):1031-1042. doi: 10.1016/j.jcis.2024.08.237. Epub 2024 Aug 31.
Cost-efficient material with an ingenious design is important in the engineering applications of flexible energy storage and electromagnetic (EM) protection. In this study, bimetallic ZnCoS (ZCS) polyhedral nanoparticles homogenously embedded in the surface of porous N-doped carbon nanofiber membranes (ZCS@PCNFM) have been fabricated by electrospinning technique combined with carbonization and hydrothermal processes. As a self-assembled electrode for lithium-ion batteries (LIBs), the bimetallic ZCS nanoparticles possess rich redox reactions, good electrical conductivity, and pseudocapacitive properties, while the three-dimensional (3D) multiaperture architecture of the nanofiber film not only shortens the transfer spacing of lithium ions and electrons but also effectively tolerates the volume variation during lithiation and delithiation cycles. Benefiting from the above merits, the ZCS@PCNFM electrode exhibits good cycle performance (662.3 mA h/g at 100 mA/g after 100 cycles), superior rate capacity (401.3 mA h/g at 1 A/g) and an extremely high initial specific capacity of 1152.2 mAh/g at 100 mA/g. Meanwhile, depending on the hierarchical nanostructure and multi-component heterogeneous interface effects constructed by 3D inlaid architecture, the ZCS@PCNFM nanocomposite exhibits fascinating microwave absorption (MA) characteristics with a superhigh reflection loss (RL) of -49.7 dB at a filling content of only 20 wt% and corresponding effective absorption bandwidth (EAB, RL<-10 dB) of 5.2 GHz ranging from 12.8 to 18.0 GHz at 2.2 mm.
在柔性储能和电磁防护的工程应用中,具有巧妙设计的高性价比材料至关重要。在本研究中,通过静电纺丝技术结合碳化和水热工艺,制备了均匀嵌入多孔氮掺杂碳纳米纤维膜(ZCS@PCNFM)表面的双金属ZnCoS(ZCS)多面体纳米颗粒。作为锂离子电池(LIBs)的自组装电极,双金属ZCS纳米颗粒具有丰富的氧化还原反应、良好的导电性和赝电容特性,而纳米纤维膜的三维(3D)多孔结构不仅缩短了锂离子和电子的传输间距,还能有效耐受锂化和脱锂循环过程中的体积变化。得益于上述优点,ZCS@PCNFM电极表现出良好的循环性能(100次循环后在100 mA/g下为662.3 mA h/g)、优异的倍率性能(在1 A/g下为401.3 mA h/g)以及在100 mA/g下高达1152.2 mAh/g的极高初始比容量。同时,基于三维镶嵌结构构建的分级纳米结构和多组分异质界面效应,ZCS@PCNFM纳米复合材料表现出迷人 的微波吸收(MA)特性,在仅20 wt%的填充量下具有-49.7 dB的超高反射损耗(RL),在2.2 mm时对应于12.8至18.0 GHz范围内5.2 GHz的有效吸收带宽(EAB,RL<-10 dB)。