Han Jin-Hong, Zhou Hai-Ping, Wang Li-Li, Zhao Zhi-Wen, Liu Xing-Man, Pan Qing-Qing, Su Zhong-Min
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China.
College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 15;325:125043. doi: 10.1016/j.saa.2024.125043. Epub 2024 Aug 30.
The performance of organic solar cell (OSC) devices has been significantly enhanced by the dramatic evolution of A-D-A type non-fullerene acceptors (NFAs). Nevertheless, the structure-property-performance relationship of NFAs in the OSC device is unclear. Here, the intrinsic design factors of isomeric, fluorination and π-conjunction curtailing on the photophysical properties of benzodi (thienopyran) (BDTP) (named NBDTP-M, NBDTTP-M, NBDTP-F, and NBDTP-F)-based NFAs are discussed. The results show that fluorination on the terminal group of NBDTP-F could effectively decrease the highest occupied orbital (HOMO) energy level and the lowest unoccupied orbital (LUMO) energy level. And the long π-conjugated donor unit for NBDTTP-M could increase the HOMO energy level and bring a small HOMO-LUMO energy bandgap. Meanwhile, the substitution of external oxygen atoms and the fluorine atoms in the terminal group could introduce positive changes to the electrostatic potential of the NBDTP-F, favouring the charge separation at the donor/acceptor interface. Moreover, the structural design of external oxygen atom substitution, fluorination on the terminal group and curtailed π-conjugated donor unit could decrease the electron vibration-coupling of exciton diffusion, exciton dissociation and electronic transfer processes. The suppression of the exciton decay and charge recombination in those high-performance NFAs indicate that the investigated molecular designs could be effective for further improvement of OSCs.
A-D-A型非富勒烯受体(NFAs)的显著发展极大地提高了有机太阳能电池(OSC)器件的性能。然而,NFAs在OSC器件中的结构-性能关系尚不清楚。在此,讨论了基于苯并二(噻吩并吡喃)(BDTP)(命名为NBDTP-M、NBDTTP-M、NBDTP-F和NBDTP-F)的NFAs的异构体、氟化和π共轭缩减对其光物理性质的内在设计因素。结果表明,NBDTP-F端基上的氟化可有效降低最高占据轨道(HOMO)能级和最低未占据轨道(LUMO)能级。并且NBDTTP-M的长π共轭供体单元可提高HOMO能级并带来较小的HOMO-LUMO能带隙。同时,端基中外部氧原子和氟原子的取代会给NBDTP-F的静电势带来积极变化,有利于供体/受体界面处的电荷分离。此外,外部氧原子取代、端基氟化和缩减π共轭供体单元的结构设计可降低激子扩散、激子解离和电子转移过程中的电子振动耦合。这些高性能NFAs中激子衰减和电荷复合的抑制表明,所研究的分子设计对于进一步改善OSC可能是有效的。