Suppr超能文献

从泛癌表达数据中预测主转录因子。

Predicting master transcription factors from pan-cancer expression data.

作者信息

Reddy Jessica, Fonseca Marcos A S, Corona Rosario I, Nameki Robbin, Segato Dezem Felipe, Klein Isaac A, Chang Heidi, Chaves-Moreira Daniele, Afeyan Lena K, Malta Tathiane M, Lin Xianzhi, Abbasi Forough, Font-Tello Alba, Sabedot Thais, Cejas Paloma, Rodríguez-Malavé Norma, Seo Ji-Heui, Lin De-Chen, Matulonis Ursula, Karlan Beth Y, Gayther Simon A, Pasaniuc Bogdan, Gusev Alexander, Noushmehr Houtan, Long Henry, Freedman Matthew L, Drapkin Ronny, Young Richard A, Abraham Brian J, Lawrenson Kate

机构信息

Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Sci Adv. 2021 Nov 26;7(48):eabf6123. doi: 10.1126/sciadv.abf6123. Epub 2021 Nov 24.

Abstract

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.

摘要

关键的发育“主转录因子”(MTFs)在肿瘤发生过程中可能会被颠覆,以控制致癌转录程序。目前识别MTFs的方法依赖于ChIP-seq数据,而许多癌症无法获得该数据。我们开发了CaCTS(癌症核心转录因子特异性)算法,利用泛癌RNA测序数据对候选MTFs进行优先级排序。CaCTS在34种肿瘤类型和140个亚型中识别出候选MTFs,包括对MTFs未知的癌症类型/亚型的预测,例如在卵巢癌(OvCa)中预测PAX8、SOX17和MECOM为候选MTFs。在OvCa细胞中,与已知的MTF特性一致,这些因子是细胞存活所必需的,位于超级增强子附近,在全局上共同占据调控元件,共同结合编码OvCa生物标志物的基因座,并且对转录的药理抑制敏感。我们对MTFs的预测,特别是对于对转录驱动因素了解有限的肿瘤类型,为在广泛的癌症中对MTFs进行治疗靶向铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcdb/8612691/55905500722d/sciadv.abf6123-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验