Makkar Jasson, Flores Jorge, Matich Mason, Duong Tommy T, Thompson Sean M, Du Yiqing, Busch Isabelle, Phan Quan M, Wang Qing, Delevich Kristen, Broughton-Neiswanger Liam, Driskell Iwona M, Driskell Ryan R
School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.
J Invest Dermatol. 2025 Apr;145(4):800-811.e8. doi: 10.1016/j.jid.2024.08.014. Epub 2024 Sep 3.
Hair quality is an important indicator of health in humans and other animals. Current approaches to assess hair quality are generally nonquantitative or are low throughput owing to technical limitations of splitting hairs. We developed a deep learning-based computer vision approach for the high-throughput quantification of individual hair fibers at a high resolution. Our innovative computer vision tool can distinguish and extract overlapping fibers for quantification of multivariate features, including length, width, and color, to generate single-hair phenomes of diverse conditions across the lifespan of mice. Using our tool, we explored the effects of hormone signaling, genetic modifications, and aging on hair follicle output. Our analyses revealed hair phenotypes resultant of endocrinological, developmental, and aging-related alterations in the fur coats of mice. These results demonstrate the efficacy of our deep hair phenomics tool for characterizing factors that modulate the hair follicle and developing, to our knowledge, previously unreported diagnostic methods for detecting disease through the hair fiber. Finally, we have generated a searchable, interactive web tool for the exploration of our hair fiber data at skinregeneration.org.
毛发质量是人类和其他动物健康的重要指标。由于毛发分割技术的局限性,目前评估毛发质量的方法通常是非定量的或通量较低。我们开发了一种基于深度学习的计算机视觉方法,用于在高分辨率下对单根毛发纤维进行高通量定量分析。我们创新的计算机视觉工具可以区分并提取重叠的纤维,以对包括长度、宽度和颜色在内的多变量特征进行定量分析,从而生成小鼠整个生命周期不同条件下的单根毛发表型。使用我们的工具,我们探究了激素信号传导、基因修饰和衰老对毛囊输出的影响。我们的分析揭示了小鼠皮毛中内分泌、发育和衰老相关变化所导致的毛发表型。这些结果证明了我们的深度毛发表型组学工具在表征调节毛囊的因素方面的有效性,并开发出了据我们所知此前未报道过的通过毛发纤维检测疾病的诊断方法。最后,我们在skinregeneration.org上生成了一个可搜索的交互式网络工具,用于探索我们的毛发纤维数据。