Suppr超能文献

深度毛发表型组学:在内分泌学、发育与衰老中的意义

Deep Hair Phenomics: Implications in Endocrinology, Development, and Aging.

作者信息

Makkar Jasson, Flores Jorge, Matich Mason, Duong Tommy T, Thompson Sean M, Du Yiqing, Busch Isabelle, Phan Quan M, Wang Qing, Delevich Kristen, Broughton-Neiswanger Liam, Driskell Iwona M, Driskell Ryan R

机构信息

School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.

Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.

出版信息

J Invest Dermatol. 2025 Apr;145(4):800-811.e8. doi: 10.1016/j.jid.2024.08.014. Epub 2024 Sep 3.

Abstract

Hair quality is an important indicator of health in humans and other animals. Current approaches to assess hair quality are generally nonquantitative or are low throughput owing to technical limitations of splitting hairs. We developed a deep learning-based computer vision approach for the high-throughput quantification of individual hair fibers at a high resolution. Our innovative computer vision tool can distinguish and extract overlapping fibers for quantification of multivariate features, including length, width, and color, to generate single-hair phenomes of diverse conditions across the lifespan of mice. Using our tool, we explored the effects of hormone signaling, genetic modifications, and aging on hair follicle output. Our analyses revealed hair phenotypes resultant of endocrinological, developmental, and aging-related alterations in the fur coats of mice. These results demonstrate the efficacy of our deep hair phenomics tool for characterizing factors that modulate the hair follicle and developing, to our knowledge, previously unreported diagnostic methods for detecting disease through the hair fiber. Finally, we have generated a searchable, interactive web tool for the exploration of our hair fiber data at skinregeneration.org.

摘要

毛发质量是人类和其他动物健康的重要指标。由于毛发分割技术的局限性,目前评估毛发质量的方法通常是非定量的或通量较低。我们开发了一种基于深度学习的计算机视觉方法,用于在高分辨率下对单根毛发纤维进行高通量定量分析。我们创新的计算机视觉工具可以区分并提取重叠的纤维,以对包括长度、宽度和颜色在内的多变量特征进行定量分析,从而生成小鼠整个生命周期不同条件下的单根毛发表型。使用我们的工具,我们探究了激素信号传导、基因修饰和衰老对毛囊输出的影响。我们的分析揭示了小鼠皮毛中内分泌、发育和衰老相关变化所导致的毛发表型。这些结果证明了我们的深度毛发表型组学工具在表征调节毛囊的因素方面的有效性,并开发出了据我们所知此前未报道过的通过毛发纤维检测疾病的诊断方法。最后,我们在skinregeneration.org上生成了一个可搜索的交互式网络工具,用于探索我们的毛发纤维数据。

相似文献

3
Introduction to Hair Development.毛发发育概论。
Adv Exp Med Biol. 2018;1054:89-96. doi: 10.1007/978-981-10-8195-8_8.
4
Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation.外胚层发育不良蛋白调节毛发分化的淋巴毒素-β途径。
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9142-7. doi: 10.1073/pnas.0509678103. Epub 2006 May 31.
5
6
Graying: gerontobiology of the hair follicle pigmentary unit.白发:毛囊色素单位的老年生物学
Exp Gerontol. 2001 Jan;36(1):29-54. doi: 10.1016/s0531-5565(00)00210-2.
9
[The biology of hair follicle].[毛囊生物学]
J Soc Biol. 2005;199(4):343-8. doi: 10.1051/jbio:2005036.

本文引用的文献

1
Artificial intelligence and skin cancer.人工智能与皮肤癌
Front Med (Lausanne). 2024 Mar 19;11:1331895. doi: 10.3389/fmed.2024.1331895. eCollection 2024.
7
Human scalp hair as a thermoregulatory adaptation.人类头皮毛发作为一种体温调节适应机制。
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2301760120. doi: 10.1073/pnas.2301760120. Epub 2023 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验