Suppr超能文献

基于图像和临床数据的人工智能预测术后疤痕严重程度。

Predicting the severity of postoperative scars using artificial intelligence based on images and clinical data.

机构信息

Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea.

Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea.

出版信息

Sci Rep. 2023 Aug 18;13(1):13448. doi: 10.1038/s41598-023-40395-z.

Abstract

Evaluation of scar severity is crucial for determining proper treatment modalities; however, there is no gold standard for assessing scars. This study aimed to develop and evaluate an artificial intelligence model using images and clinical data to predict the severity of postoperative scars. Deep neural network models were trained and validated using images and clinical data from 1283 patients (main dataset: 1043; external dataset: 240) with post-thyroidectomy scars. Additionally, the performance of the model was tested against 16 dermatologists. In the internal test set, the area under the receiver operating characteristic curve (ROC-AUC) of the image-based model was 0.931 (95% confidence interval 0.910‒0.949), which increased to 0.938 (0.916‒0.955) when combined with clinical data. In the external test set, the ROC-AUC of the image-based and combined prediction models were 0.896 (0.874‒0.916) and 0.912 (0.892‒0.932), respectively. In addition, the performance of the tested algorithm with images from the internal test set was comparable with that of 16 dermatologists. This study revealed that a deep neural network model derived from image and clinical data could predict the severity of postoperative scars. The proposed model may be utilized in clinical practice for scar management, especially for determining severity and treatment initiation.

摘要

评估疤痕严重程度对于确定适当的治疗方式至关重要;然而,目前还没有评估疤痕的金标准。本研究旨在开发和评估一种使用图像和临床数据预测甲状腺切除术后疤痕严重程度的人工智能模型。使用来自 1283 名(主要数据集:1043 名;外部数据集:240 名)甲状腺切除术后有疤痕的患者的图像和临床数据,对深度神经网络模型进行了训练和验证。此外,还测试了该模型对 16 名皮肤科医生的性能。在内测集中,基于图像的模型的受试者工作特征曲线(ROC-AUC)的面积为 0.931(95%置信区间 0.910-0.949),当与临床数据结合时,ROC-AUC 增加到 0.938(0.916-0.955)。在外测集中,基于图像和联合预测模型的 ROC-AUC 分别为 0.896(0.874-0.916)和 0.912(0.892-0.932)。此外,用内测集图像测试的算法的性能与 16 名皮肤科医生相当。本研究表明,一种基于图像和临床数据的深度神经网络模型可以预测术后疤痕的严重程度。该模型可能在临床实践中用于疤痕管理,特别是用于确定严重程度和开始治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dee/10439171/a47ff46a055b/41598_2023_40395_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验