Suppr超能文献

基于 EEG 的帕金森病患者情绪图表分析,使用卷积循环神经网络和跨数据集学习。

EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.

机构信息

National University of Sciences and Technology, Islamabad, Postcode: 44000, Pakistan.

Nanyang Technological University (NTU), 639798, Singapore; Science of Learning in Education (SoLE), Office of Education Research (OER), National Institute of Education (NIE), 637616, Singapore.

出版信息

Comput Biol Med. 2022 May;144:105327. doi: 10.1016/j.compbiomed.2022.105327. Epub 2022 Mar 11.

Abstract

Electroencephalogram (EEG) based emotion classification reflects the actual and intrinsic emotional state, resulting in more reliable, natural, and meaningful human-computer interaction with applications in entertainment consumption behavior, interactive brain-computer interface, and monitoring of psychological health of patients in the domain of e-healthcare. Challenges of EEG-based emotion recognition in real-world applications are variations among experimental settings and cognitive health conditions. Parkinson's Disease (PD) is the second most common neurodegenerative disorder, resulting in impaired recognition and expression of emotions. The deficit of emotional expression poses challenges for the healthcare services provided to PD patients. This study proposes 1D-CRNN-ELM architecture, which combines one-dimensional Convolutional Recurrent Neural Network (1D-CRNN) with an Extreme Learning Machine (ELM), robust for the emotion detection of PD patients, also available for cross dataset learning with various emotions and experimental settings. In the proposed framework, after EEG preprocessing, the trained CRNN can use as a feature extractor with ELM as the classifier, and again this trained CRNN can be used for learning of new emotions set with fine-tuning of other datasets. This paper also applied cross dataset learning of emotions by training with PD patients datasets and fine-tuning with publicly available datasets of AMIGOS and SEED-IV, and vice versa. Random splitting of train and test data with 80 - 20 ratio resulted in an accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for HC with six basic emotion classes. Fine-tuning of trained architecture with four emotions of the SEED-IV dataset results in 92.5% accuracy. To validate the generalization of our results, leave one subject (patient) out cross-validation is also incorporated with mean accuracies of 95.84% for AMIGOS, 75.09% for PD, 77.85% for HC, and 84.97% for SEED-IV is achieved. Only a 1 - sec segment of EEG signal from 14 channels is enough to detect emotions with this performance. The proposed method outperforms state-of-the-art studies to classify EEG-based emotions with publicly available datasets, provide cross dataset learning, and validate the robustness of the deep learning framework for real-world application of psychological healthcare monitoring of Parkinson's disease patients.

摘要

基于脑电图(EEG)的情绪分类反映了实际和内在的情绪状态,从而实现了更可靠、自然和有意义的人机交互,应用于娱乐消费行为、交互式脑机接口以及电子医疗保健领域的患者心理健康监测。基于 EEG 的情绪识别在实际应用中的挑战是实验设置和认知健康状况的变化。帕金森病(PD)是第二常见的神经退行性疾病,导致情绪识别和表达受损。情绪表达的缺陷给 PD 患者提供的医疗服务带来了挑战。本研究提出了 1D-CRNN-ELM 架构,该架构结合了一维卷积递归神经网络(1D-CRNN)和极限学习机(ELM),对 PD 患者的情绪检测具有鲁棒性,也可用于具有各种情绪和实验设置的跨数据集学习。在提出的框架中,在 EEG 预处理后,经过训练的 CRNN 可以用作具有 ELM 作为分类器的特征提取器,并且该经过训练的 CRNN 可以再次用于使用新的情绪数据集进行学习,并对其他数据集进行微调。本文还通过使用 PD 患者数据集进行训练和使用公开可用的 AMIGOS 和 SEED-IV 数据集进行微调来进行情绪的跨数据集学习,反之亦然。通过 80-20 的比例随机分割训练数据和测试数据,在包含六个基本情绪类别的 AMIGOS、PD 和 HC 中,准确率分别为 97.75%、83.20%和 86.00%。使用 SEED-IV 数据集的四个情绪对训练好的架构进行微调,准确率为 92.5%。为了验证结果的泛化性,还采用了受试者(患者)逐个排除的交叉验证,在 AMIGOS 中,平均准确率为 95.84%,PD 为 75.09%,HC 为 77.85%,SEED-IV 为 84.97%。只需要 14 个通道的 EEG 信号的 1 秒片段就可以实现这种性能。与使用公开数据集的最先进的研究相比,该方法在基于 EEG 的情绪分类方面表现更好,提供了跨数据集学习,并验证了深度学习框架在帕金森病患者心理保健监测的实际应用中的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验