Suppr超能文献

利用蛋白质组学标志物增强心房颤动风险预测:与临床和多基因风险评分的比较分析。

Enhanced prediction of atrial fibrillation risk using proteomic markers: a comparative analysis with clinical and polygenic risk scores.

机构信息

Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, Guangdong, China.

Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, Guangdong, China

出版信息

Heart. 2024 Oct 10;110(21):1270-1276. doi: 10.1136/heartjnl-2024-324274.

Abstract

BACKGROUND

Proteomic biomarkers have shown promise in predicting various cardiovascular conditions, but their utility in assessing the risk of atrial fibrillation (AF) remains unclear. This study aimed to develop and validate a protein-based risk score for predicting incident AF and to compare its predictive performance with traditional clinical risk factors and polygenic risk scores in a large cohort from the UK Biobank.

METHODS

We analysed data from 36 129 white British individuals without prior AF, assessing 2923 plasma proteins using the Olink Explore 3072 assay. The cohort was divided into a training set (70%) and a test set (30%) to develop and validate a protein risk score for AF. We compared the predictive performance of this score with the HARMS-AF risk model and a polygenic risk score.

RESULTS

Over an average follow-up of 11.8 years, 2450 incident AF cases were identified. A 47-protein risk score was developed, with N-terminal prohormone of brain natriuretic peptide (NT-proBNP) being the most significant predictor. In the test set, the protein risk score (per SD increment, HR 1.94; 95% CI 1.83 to 2.05) and NT-proBNP alone (HR 1.80; 95% CI 1.70 to 1.91) demonstrated superior predictive performance (C-statistic: 0.802 and 0.785, respectively) compared with HARMS-AF and polygenic risk scores (C-statistic: 0.751 and 0.748, respectively).

CONCLUSIONS

A protein-based risk score, particularly incorporating NT-proBNP, offers superior predictive value for AF risk over traditional clinical and polygenic risk scores, highlighting the potential for proteomic data in AF risk stratification.

摘要

背景

蛋白质组生物标志物在预测各种心血管疾病方面显示出了前景,但它们在评估心房颤动(AF)风险方面的效用尚不清楚。本研究旨在开发和验证一种基于蛋白质的风险评分,用于预测 AF 的发生,并将其与英国生物库中大型队列的传统临床危险因素和多基因风险评分的预测性能进行比较。

方法

我们分析了来自 36129 名无 AF 病史的白种英国个体的数据,使用 Olink Explore 3072 检测法评估了 2923 种血浆蛋白。该队列分为训练集(70%)和测试集(30%),以开发和验证 AF 的蛋白质风险评分。我们比较了该评分与 HARMS-AF 风险模型和多基因风险评分的预测性能。

结果

在平均 11.8 年的随访期间,确定了 2450 例新发 AF 病例。开发了一个包含 47 种蛋白质的风险评分,其中脑钠肽前体(NT-proBNP)是最显著的预测因子。在测试集中,蛋白质风险评分(每 SD 增加,HR 1.94;95%CI 1.83 至 2.05)和 NT-proBNP 单独(HR 1.80;95%CI 1.70 至 1.91)的预测性能均优于 HARMS-AF 和多基因风险评分(C 统计量:分别为 0.802 和 0.785)。

结论

基于蛋白质的风险评分,特别是纳入 NT-proBNP,在预测 AF 风险方面优于传统的临床和多基因风险评分,突出了蛋白质组数据在 AF 风险分层中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验