Division of Basic Sciences, University of Crete Medical School, Heraklion 71110, Greece.
Cyprus Institute of Neurology and Genetics, Bioinformatics Department, P.O.Box 23462, 1683 Nicosia, Cyprus.
J Mol Biol. 2024 Sep 1;436(17):168654. doi: 10.1016/j.jmb.2024.168654. Epub 2024 Jun 12.
In the majority of downstream analysis pipelines for single-cell RNA sequencing (scRNA-seq), techniques like dimensionality reduction and feature selection are employed to address the problem of high-dimensional nature of the data. These approaches involve mapping the data onto a lower-dimensional space, eliminating less informative genes, and pinpointing the most pertinent features. This process ultimately leads to a reduction in the number of dimensions used for downstream analysis, which in turn speeds up the computation of large-scale scRNA-seq data. Most approaches are directed to isolate from biological background the genes characterizing different cells and or the condition under study by establishing lists of differentially expressed or coexpressed genes. Herein, we present scRNA-Explorer an open-source online tool for simplified and rapid scRNA-seq analysis designed with the end user in mind. scRNA-Explorer utilizes: (i) Filtering out uninformative cells in an interactive manner via a web interface, (ii) Gene correlation analysis coupled with an extra step of evaluating the biological importance of these correlations, and (iii) Gene enrichment analysis of correlated genes in order to find gene implication in specific functions. We developed a pipeline to address the above problem. The scRNA-Explorer pipeline allows users to interrogate in an interactive manner scRNA-sequencing data sets to explore via gene expression correlations possible function(s) of a gene of interest. scRNA-Explorer can be accessed at https://bioinformatics.med.uoc.gr/shinyapps/app/scrnaexplorer.
在单细胞 RNA 测序 (scRNA-seq) 的大多数下游分析管道中,采用了降维和特征选择等技术来解决数据的高维性质问题。这些方法涉及将数据映射到低维空间,消除信息量较少的基因,并确定最相关的特征。这一过程最终减少了下游分析中使用的维度数量,从而加速了大规模 scRNA-seq 数据的计算。大多数方法旨在通过建立差异表达或共表达基因列表,从生物背景中分离出不同细胞或研究条件所特有的基因。在这里,我们提出了 scRNA-Explorer,这是一个开源的在线工具,旨在简化和快速分析 scRNA-seq,旨在为最终用户提供便利。scRNA-Explorer 利用:(i)通过网络界面以交互方式过滤掉无信息细胞,(ii)基因相关性分析,并结合评估这些相关性的生物学重要性的额外步骤,以及(iii)相关基因的基因富集分析,以寻找特定功能中的基因含义。我们开发了一个解决上述问题的管道。scRNA-Explorer 管道允许用户以交互方式查询 scRNA-seq 数据集,通过基因表达相关性探索感兴趣基因的可能功能。scRNA-Explorer 可在 https://bioinformatics.med.uoc.gr/shinyapps/app/scrnaexplorer 上访问。