Suppr超能文献

通过真空膜蒸馏混合处理对药物化合物进行纯化的建模与验证。

Modeling and validation of purification of pharmaceutical compounds via hybrid processing of vacuum membrane distillation.

机构信息

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2024 Sep 5;14(1):20734. doi: 10.1038/s41598-024-71850-0.

Abstract

This study provides an in-depth examination of forecasting the concentration of pharmaceutical compounds utilizing the input features (coordinates) r and z through a range of machine learning models. Purification of pharmaceuticals via vacuum membrane distillation process was carried out and the model was developed for prediction of separation efficiency based on hybrid approach. Dataset was collected from mass transfer analysis of process to obtain concentration distribution in the feed side of membrane distillation and used it for machine learning models. The dataset has undergone preprocessing, which includes outlier detection using the Isolation Forest algorithm. Three regression models were used including polynomial regression (PR), k-nearest neighbors (KNN), and Tweedie regression (TWR). These models were further enhanced using the Bagging ensemble technique to improve prediction accuracy and reduce variance. Hyper-parameter optimization was conducted using the Multi-Verse Optimizer algorithm, which draws inspiration from cosmological concepts. The Bagging-KNN model had the highest predictive accuracy (R2 = 0.99923) on the test set, indicating exceptional precision. The Bagging-PR model displayed satisfactory performance, with a slightly reduced level of accuracy. In contrast, the Bagging-TWR model showcased the least accuracy among the three models. This research illustrates the effectiveness of incorporating bagging and advanced optimization methods for precise and dependable predictive modeling in complex datasets.

摘要

本研究通过一系列机器学习模型,深入探讨了利用输入特征(坐标)r 和 z 预测药物化合物浓度的方法。通过真空膜蒸馏工艺对药物进行了纯化,并采用混合方法为预测分离效率开发了模型。数据集通过过程传质分析收集,以获得膜蒸馏进料侧的浓度分布,并将其用于机器学习模型。数据集已经过预处理,包括使用孤立森林算法进行异常值检测。使用了三种回归模型,包括多项式回归(PR)、k-最近邻(KNN)和 Tweedie 回归(TWR)。这些模型进一步使用 Bagging 集成技术进行增强,以提高预测准确性并降低方差。使用受宇宙学概念启发的多宇宙优化算法(Multi-Verse Optimizer)进行了超参数优化。Bagging-KNN 模型在测试集上具有最高的预测准确性(R2=0.99923),表明其具有极高的精度。Bagging-PR 模型表现出令人满意的性能,但其准确性略有降低。相比之下,Bagging-TWR 模型在这三个模型中表现出最低的准确性。这项研究说明了在复杂数据集的精确可靠预测建模中,结合 Bagging 和先进优化方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/11377698/30e032fa7009/41598_2024_71850_Fig1_HTML.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验