Suppr超能文献

基于人工智能技术开发新型计算模型以预测通过真空膜蒸馏进行的液体混合物分离。

Development of novel computational models based on artificial intelligence technique to predict liquids mixtures separation via vacuum membrane distillation.

作者信息

Wei Yanfen

机构信息

Department of Information Management, School of Big Data and Artificial Intelligence, Guangxi University of Finance and Economics, Nanning, 530003, China.

出版信息

Sci Rep. 2024 Oct 15;14(1):24121. doi: 10.1038/s41598-024-75074-0.

Abstract

The fundamental objective of this paper is to use Machine Learning (ML) methods for building models on temperature (T) prediction using input features r and z for a membrane separation process. A hybrid model was developed based on computational fluid dynamics (CFD) to simulate the separation process and integrate the results into machine learning models. The CFD simulations were performed to estimate temperature distribution in a vacuum membrane distillation (VMD) process for separation of liquid mixtures. The evaluated ML models include Support Vector Machine (SVM), Elastic Net Regression (ENR), Extremely Randomized Trees (ERT), and Bayesian Ridge Regression (BRR). Performance was improved using Differential Evolution (DE) for hyper-parameter tuning, and model validation was performed using Monte Carlo Cross-Validation. The results clearly indicated the models' effectiveness in temperature prediction, with SVM outperforming other models in terms of accuracy. The SVM model had a mean R value of 0.9969 and a standard deviation of 0.0001, indicating a strong and consistent fit to the membrane data. Furthermore, it exhibited the lowest mean squared error, mean absolute error, and mean absolute percentage error, signifying superior predictive accuracy and reliability. These outcomes highlight the importance of selecting a suitable model and optimizing hyperparameters to guarantee accurate predictions in ML tasks. It demonstrates that using SVM, optimized with DE improves accuracy and consistency for this specific predictive task in membrane separation context.

摘要

本文的基本目标是使用机器学习(ML)方法,基于膜分离过程的输入特征r和z构建温度(T)预测模型。基于计算流体动力学(CFD)开发了一种混合模型,用于模拟分离过程并将结果整合到机器学习模型中。进行CFD模拟以估计真空膜蒸馏(VMD)过程中用于分离液体混合物的温度分布。评估的ML模型包括支持向量机(SVM)、弹性网络回归(ENR)、极端随机树(ERT)和贝叶斯岭回归(BRR)。使用差分进化(DE)进行超参数调整以提高性能,并使用蒙特卡罗交叉验证进行模型验证。结果清楚地表明了模型在温度预测方面的有效性,其中SVM在准确性方面优于其他模型。SVM模型的平均R值为0.9969,标准差为0.0001,表明对膜数据具有很强且一致的拟合度。此外,它表现出最低的均方误差、平均绝对误差和平均绝对百分比误差,意味着具有卓越的预测准确性和可靠性。这些结果突出了选择合适模型和优化超参数以确保机器学习任务中准确预测的重要性。这表明使用经DE优化的SVM可提高膜分离背景下此特定预测任务的准确性和一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0222/11480478/2895f6c4b8a9/41598_2024_75074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验