Suppr超能文献

计算 insights 进入非血红素二铁烷烃单加氧酶 AlkB:电子结构,氧气活化和液体烷烃的羟化机制。

Computational Insights into the Non-Heme Diiron Alkane Monooxygenase Enzyme AlkB: Electronic Structures, Dioxygen Activation, and Hydroxylation Mechanism of Liquid Alkanes.

机构信息

School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

出版信息

Inorg Chem. 2024 Sep 16;63(37):17056-17066. doi: 10.1021/acs.inorgchem.4c02721. Epub 2024 Sep 6.

Abstract

Alkane monooxygenase (AlkB) is a membrane-spanning metalloenzyme that catalyzes the terminal hydroxylation of straight-chain alkanes involved in the microbially mediated degradation of liquid alkanes. According to the cryoEM structures, AlkB features a unique multihistidine ligand coordination environment with a long Fe-Fe distance in its active center. Up to now, how AlkB employs the diiron center to activate dioxygen and which species is responsible for triggering the hydroxylation are still elusive. In this work, we constructed computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the electronic characteristics of the diiron active center and how AlkB carries out the terminal hydroxylation. Our calculations revealed that the spin-spin interaction between two irons is rather weak. The dioxygen may ligate to either the Fe1 or Fe2 atom and prefers to act as a linker to increase the spin-spin interaction of two irons, facilitating the dioxygen cleavage to generate the highly reactive Fe(IV)═O. Thus, AlkB employs Fe(IV)═O to trigger the hydrogen abstraction. In addition, the previously suggested mechanism that AlkB uses both the dioxygen and Fe-coordinated water to perform hydroxylation was calculated to be unlikely. Besides, our results indicate that AlkB cannot use the Fe-coordinated dioxygen to directly trigger hydrogen abstraction.

摘要

烷烃单加氧酶(AlkB)是一种跨膜金属酶,可催化直链烷烃的末端羟化,直链烷烃参与液态烷烃的微生物介导降解。根据冷冻电镜结构,AlkB 具有独特的多组氨酸配体配位环境,其活性中心的 Fe-Fe 距离较长。到目前为止,AlkB 如何利用二铁中心激活分子氧,以及哪种物质负责引发羟化反应,仍然难以捉摸。在这项工作中,我们构建了计算模型并进行了量子力学/分子力学(QM/MM)计算,以阐明二铁活性中心的电子特性以及 AlkB 如何进行末端羟化。我们的计算表明,两个铁之间的自旋-自旋相互作用较弱。分子氧可能与 Fe1 或 Fe2 原子配位,并且更喜欢充当连接体以增加两个铁之间的自旋-自旋相互作用,从而促进分子氧的裂解以生成高反应性的 Fe(IV)═O。因此,AlkB 利用 Fe(IV)═O 来引发氢原子的提取。此外,之前提出的 AlkB 同时使用分子氧和 Fe 配位水进行羟化的机制被计算为不太可能。此外,我们的结果表明,AlkB 不能使用 Fe 配位的分子氧直接引发氢原子的提取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验