Suppr超能文献

双铁双氧配合物催化烷烃羟基化和乙烯环氧化反应机理的理论研究。底物分子的影响。

Theoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules.

作者信息

Musaev Djamaladdin G, Basch Harold, Morokuma Keiji

机构信息

Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.

出版信息

J Am Chem Soc. 2002 Apr 17;124(15):4135-48. doi: 10.1021/ja0176393.

Abstract

The hybrid density functional method B3LYP was used to study the mechanism of the hydrocarbon (methane, ethane, methyl fluoride, and ethylene) oxidation reaction catalyzed by the complexes cis-(H(2)O)(NH(2))Fe(mu-O)(2)(eta(2)-HCOO)(2)Fe(NH(2))(H(2)O), I, and cis-(HCOO)(Imd)Fe(mu-O)(2)(eta(2)-HCOO)(2)Fe(Imd)(HCOO) (Imd = Imidazole), I_m, the "small" and "medium" model of compound Q of the methane monooxygenase (MMO). The improvement of the model from "small" to "medium" did not change the qualitative conclusions but significantly changed the calculated energetics. As in the case of methane oxidation reported by the authors previously, the reaction of all the substrates studied here is shown to start by coordination of the substrate molecule to the bridging oxygen atom, O(1) of I, an Fe(IV)-Fe(IV) complex, followed by the H-atom abstraction at the transition state III leading to the bound hydroxy alkyl intermediate IV of Fe(III)-Fe(IV) core. IV undergoes a very exothermic coupling of alkyl and hydroxy groups to give the alcohol complex VI of Fe(III)-Fe(III) core, from which alcohol dissociates. The H(b)-atom abstraction (or C-H bond activation) barrier at transition state III is found to be a few kcal/mol lower for C(2)H(6) and CH(3)F than for CH(4). The calculated trend in the H(b)-abstraction barrier, CH(4) (21.8 kcal/mol) > CH(3)F (18.8 kcal/mol) > or = C(2)H(6) (18.5 kcal/mol), is consistent with the C-H(b) bond strength in these substrates. Thus, the weaker the C-H(b) bond, the lower is the H(b)-abstraction barrier. It was shown that the replacement of a H-atom in a methane molecule with a more electronegative group tends to make the H(b)-abstraction transition state less "reactant-like". In contrast, the replacement of the H-atom in CH(4) with a less electronegative group makes the H(b)-abstraction transition state more "reactant-like". The epoxidation of ethylene by complex I is found to proceed without barrier and is a highly exothermic process. Thus, in the reaction of ethylene with complex I the only product is expected to be ethylene oxide, which is consistent with the experiment.

摘要

采用杂化密度泛函方法B3LYP研究了配合物顺式-(H₂O)(NH₂)Fe(μ-O)₂(η²-HCOO)₂Fe(NH₂)(H₂O)(I)和顺式-(HCOO)(Imd)Fe(μ-O)₂(η²-HCOO)₂Fe(Imd)(HCOO)(Imd = 咪唑,I_m)催化烃类(甲烷、乙烷、氟甲烷和乙烯)氧化反应的机理,这两种配合物分别是甲烷单加氧酶(MMO)化合物Q的“小”模型和“中”模型。模型从“小”到“中”的改进并没有改变定性结论,但显著改变了计算得到的能量学数据。正如作者之前报道的甲烷氧化情况一样,这里研究的所有底物的反应都显示是从底物分子与I(一种Fe(IV)-Fe(IV)配合物)的桥连氧原子O(1)配位开始的,随后在过渡态III发生氢原子提取,生成Fe(III)-Fe(IV)核心的结合羟基烷基中间体IV。IV经历烷基和羟基的非常放热的偶联,生成Fe(III)-Fe(III)核心的醇配合物VI,醇从该配合物中解离。发现对于C₂H₆和CH₃F,过渡态III处的H(b)-原子提取(或C-H键活化)势垒比CH₄的低几kcal/mol。计算得到的H(b)-提取势垒趋势,CH₄(21.8 kcal/mol)> CH₃F(18.8 kcal/mol)> 或 = C₂H₆(18.5 kcal/mol),与这些底物中C-H(b)键的强度一致。因此,C-H(b)键越弱,H(b)-提取势垒越低。结果表明,用更具电负性的基团取代甲烷分子中的氢原子往往会使H(b)-提取过渡态不那么“反应物样”。相反,用较不具电负性的基团取代CH₄中的氢原子会使H(b)-提取过渡态更“反应物样”。发现配合物I催化乙烯环氧化反应无势垒,是一个高度放热的过程。因此,在乙烯与配合物I的反应中,预期唯一的产物是环氧乙烷,这与实验结果一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验