Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
Phys Rev Lett. 2013 Apr 19;110(16):168106. doi: 10.1103/PhysRevLett.110.168106.
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network's interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.
分析总生物量守恒的Lotka-Volterra(LV)网络的共存和生存情景对于描述生态群落的长期动态至关重要。在这里,我们为这些保守的 LV 模型中的共存情景引入了一种分类方案,并通过使用网络相互作用矩阵的Pfaffian 来量化灭绝过程。我们在四个和五个物种的一般系统的全局稳定性特性上说明了我们的发现,并找到了灭绝时间的广义标度律。