Grigor Ethan, Carver Joseph, Bulan Edric, Scott Stuart, Chew Ym John, Perera Semali
Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
Adv Sci (Weinh). 2024 Nov;11(42):e2406551. doi: 10.1002/advs.202406551. Epub 2024 Sep 6.
This work presents the successful manufacture and characterization of bespoke carbon adsorbent microstructures such as tessellated (TES) or serpentine spiral grooved (SSG) by using 3D direct light printing. This is the first time stereolithographic printing has been used to exert precise control over specific micromixer designs to quantify the impact of channel structure on the removal of n-butane. Activated microstructures achieved nitrogen Brunauer Emmett Teller (BET) surface areas up to 1600 m g while maintaining uniform channel geometries. When tested with 1000 ppm n-butane at 1 L min, the microstructures exceeded the equilibrium loading of commercial carbon-packed beds by over 40%. Dynamic adsorption breakthrough testing using a constant Reynolds number (Re 80) shows that complex micromixer designs surpassed simpler geometries, with the SSG geometry achieving a 41% longer breakthrough time. Shorter mass transfer zones were observed in all the complex geometries, suggesting superior kinetics and carbon structure utilization as a result of the micromixer-based etched grooves and interlinked channels. Furthermore, pressure drop testing demonstrates that all microstructures had half the pressure drop of commercial carbon-packed beds. This study shows the power of leveraging 3D printing to produce optimized microstructures, providing a glimpse into the future of high-performance gas separation.
这项工作展示了通过使用3D直接光打印成功制造和表征定制的碳吸附剂微观结构,如棋盘格状(TES)或蛇形螺旋槽状(SSG)。这是首次使用立体光刻打印对特定的微混合器设计进行精确控制,以量化通道结构对正丁烷去除的影响。活化后的微观结构实现了高达1600 m²/g的氮布鲁诺尔-埃米特-泰勒(BET)表面积,同时保持了均匀的通道几何形状。在1 L/min的流速下用1000 ppm正丁烷进行测试时,这些微观结构的平衡吸附量比商业碳填充床高出40%以上。使用恒定雷诺数(Re = 80)进行的动态吸附穿透测试表明,复杂的微混合器设计优于简单的几何形状,其中SSG几何形状的穿透时间延长了41%。在所有复杂几何形状中都观察到了较短的传质区,这表明基于微混合器的蚀刻槽和相互连接的通道导致了更好的动力学和碳结构利用率。此外,压降测试表明,所有微观结构的压降均为商业碳填充床的一半。这项研究展示了利用3D打印生产优化微观结构的能力,为高性能气体分离的未来提供了一瞥。